学习学习冷启动顺序推荐器

Xiaowen Huang, J. Sang, Jian Yu, Changsheng Xu
{"title":"学习学习冷启动顺序推荐器","authors":"Xiaowen Huang, J. Sang, Jian Yu, Changsheng Xu","doi":"10.1145/3466753","DOIUrl":null,"url":null,"abstract":"The cold-start recommendation is an urgent problem in contemporary online applications. It aims to provide users whose behaviors are literally sparse with as accurate recommendations as possible. Many data-driven algorithms, such as the widely used matrix factorization, underperform because of data sparseness. This work adopts the idea of meta-learning to solve the user’s cold-start recommendation problem. We propose a meta-learning-based cold-start sequential recommendation framework called metaCSR, including three main components: Diffusion Representer for learning better user/item embedding through information diffusion on the interaction graph; Sequential Recommender for capturing temporal dependencies of behavior sequences; and Meta Learner for extracting and propagating transferable knowledge of prior users and learning a good initialization for new users. metaCSR holds the ability to learn the common patterns from regular users’ behaviors and optimize the initialization so that the model can quickly adapt to new users after one or a few gradient updates to achieve optimal performance. The extensive quantitative experiments on three widely used datasets show the remarkable performance of metaCSR in dealing with the user cold-start problem. Meanwhile, a series of qualitative analysis demonstrates that the proposed metaCSR has good generalization.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"102 1","pages":"1 - 25"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Learning to Learn a Cold-start Sequential Recommender\",\"authors\":\"Xiaowen Huang, J. Sang, Jian Yu, Changsheng Xu\",\"doi\":\"10.1145/3466753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cold-start recommendation is an urgent problem in contemporary online applications. It aims to provide users whose behaviors are literally sparse with as accurate recommendations as possible. Many data-driven algorithms, such as the widely used matrix factorization, underperform because of data sparseness. This work adopts the idea of meta-learning to solve the user’s cold-start recommendation problem. We propose a meta-learning-based cold-start sequential recommendation framework called metaCSR, including three main components: Diffusion Representer for learning better user/item embedding through information diffusion on the interaction graph; Sequential Recommender for capturing temporal dependencies of behavior sequences; and Meta Learner for extracting and propagating transferable knowledge of prior users and learning a good initialization for new users. metaCSR holds the ability to learn the common patterns from regular users’ behaviors and optimize the initialization so that the model can quickly adapt to new users after one or a few gradient updates to achieve optimal performance. The extensive quantitative experiments on three widely used datasets show the remarkable performance of metaCSR in dealing with the user cold-start problem. Meanwhile, a series of qualitative analysis demonstrates that the proposed metaCSR has good generalization.\",\"PeriodicalId\":6934,\"journal\":{\"name\":\"ACM Transactions on Information Systems (TOIS)\",\"volume\":\"102 1\",\"pages\":\"1 - 25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems (TOIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3466753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3466753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

冷启动推荐是当前在线应用中亟待解决的问题。它旨在为行为稀疏的用户提供尽可能准确的推荐。许多数据驱动算法,如广泛使用的矩阵分解,由于数据稀疏性而表现不佳。本工作采用元学习的思想来解决用户冷启动推荐问题。我们提出了一个基于元学习的冷启动顺序推荐框架,称为metaCSR,包括三个主要组成部分:扩散代表,通过交互图上的信息扩散学习更好的用户/项目嵌入;时序推荐器,用于捕获行为序列的时间依赖性;以及元学习者,用于提取和传播先前用户的可转移知识,并为新用户学习良好的初始化。metaCSR能够从常规用户的行为中学习通用模式,并优化初始化,使模型在一次或几次梯度更新后能够快速适应新用户,从而达到最佳性能。在三个广泛使用的数据集上进行的大量定量实验表明,metaCSR在处理用户冷启动问题方面具有显著的性能。同时,一系列定性分析表明,所提出的metaCSR具有良好的泛化性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning to Learn a Cold-start Sequential Recommender
The cold-start recommendation is an urgent problem in contemporary online applications. It aims to provide users whose behaviors are literally sparse with as accurate recommendations as possible. Many data-driven algorithms, such as the widely used matrix factorization, underperform because of data sparseness. This work adopts the idea of meta-learning to solve the user’s cold-start recommendation problem. We propose a meta-learning-based cold-start sequential recommendation framework called metaCSR, including three main components: Diffusion Representer for learning better user/item embedding through information diffusion on the interaction graph; Sequential Recommender for capturing temporal dependencies of behavior sequences; and Meta Learner for extracting and propagating transferable knowledge of prior users and learning a good initialization for new users. metaCSR holds the ability to learn the common patterns from regular users’ behaviors and optimize the initialization so that the model can quickly adapt to new users after one or a few gradient updates to achieve optimal performance. The extensive quantitative experiments on three widely used datasets show the remarkable performance of metaCSR in dealing with the user cold-start problem. Meanwhile, a series of qualitative analysis demonstrates that the proposed metaCSR has good generalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collaborative Graph Learning for Session-based Recommendation GraphHINGE: Learning Interaction Models of Structured Neighborhood on Heterogeneous Information Network Scalable Representation Learning for Dynamic Heterogeneous Information Networks via Metagraphs Complex-valued Neural Network-based Quantum Language Models eFraudCom: An E-commerce Fraud Detection System via Competitive Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1