方差正则岭回归的子空间聚类

Chong Peng, Zhao Kang, Q. Cheng
{"title":"方差正则岭回归的子空间聚类","authors":"Chong Peng, Zhao Kang, Q. Cheng","doi":"10.1109/CVPR.2017.80","DOIUrl":null,"url":null,"abstract":"Spectral clustering based subspace clustering methods have emerged recently. When the inputs are 2-dimensional (2D) data, most existing clustering methods convert such data to vectors as preprocessing, which severely damages spatial information of the data. In this paper, we propose a novel subspace clustering method for 2D data with enhanced capability of retaining spatial information for clustering. It seeks two projection matrices and simultaneously constructs a linear representation of the projected data, such that the sought projections help construct the most expressive representation with the most variational information. We regularize our method based on covariance matrices directly obtained from 2D data, which have much smaller size and are more computationally amiable. Moreover, to exploit nonlinear structures of the data, a nonlinear version is proposed, which constructs an adaptive manifold according to updated projections. The learning processes of projections, representation, and manifold thus mutually enhance each other, leading to a powerful data representation. Efficient optimization procedures are proposed, which generate non-increasing objective value sequence with theoretical convergence guarantee. Extensive experimental results confirm the effectiveness of proposed method.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"29 11 1","pages":"682-691"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Subspace Clustering via Variance Regularized Ridge Regression\",\"authors\":\"Chong Peng, Zhao Kang, Q. Cheng\",\"doi\":\"10.1109/CVPR.2017.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectral clustering based subspace clustering methods have emerged recently. When the inputs are 2-dimensional (2D) data, most existing clustering methods convert such data to vectors as preprocessing, which severely damages spatial information of the data. In this paper, we propose a novel subspace clustering method for 2D data with enhanced capability of retaining spatial information for clustering. It seeks two projection matrices and simultaneously constructs a linear representation of the projected data, such that the sought projections help construct the most expressive representation with the most variational information. We regularize our method based on covariance matrices directly obtained from 2D data, which have much smaller size and are more computationally amiable. Moreover, to exploit nonlinear structures of the data, a nonlinear version is proposed, which constructs an adaptive manifold according to updated projections. The learning processes of projections, representation, and manifold thus mutually enhance each other, leading to a powerful data representation. Efficient optimization procedures are proposed, which generate non-increasing objective value sequence with theoretical convergence guarantee. Extensive experimental results confirm the effectiveness of proposed method.\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"29 11 1\",\"pages\":\"682-691\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

近年来出现了基于谱聚类的子空间聚类方法。当输入是二维数据时,现有的聚类方法大多将数据转化为矢量进行预处理,严重破坏了数据的空间信息。本文提出了一种新的二维数据子空间聚类方法,增强了对空间信息的保留能力。它寻找两个投影矩阵,并同时构建投影数据的线性表示,这样所寻求的投影有助于用最易变的信息构建最具表现力的表示。我们基于直接从二维数据中获得的协方差矩阵来正则化我们的方法,它具有更小的尺寸和更易于计算。此外,为了利用数据的非线性结构,提出了一种非线性版本,该版本根据更新的投影构造自适应流形。因此,投影、表示和流形的学习过程相互增强,从而产生强大的数据表示。提出了一种有效的优化方法,可以生成具有理论收敛保证的非递增目标值序列。大量的实验结果证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Subspace Clustering via Variance Regularized Ridge Regression
Spectral clustering based subspace clustering methods have emerged recently. When the inputs are 2-dimensional (2D) data, most existing clustering methods convert such data to vectors as preprocessing, which severely damages spatial information of the data. In this paper, we propose a novel subspace clustering method for 2D data with enhanced capability of retaining spatial information for clustering. It seeks two projection matrices and simultaneously constructs a linear representation of the projected data, such that the sought projections help construct the most expressive representation with the most variational information. We regularize our method based on covariance matrices directly obtained from 2D data, which have much smaller size and are more computationally amiable. Moreover, to exploit nonlinear structures of the data, a nonlinear version is proposed, which constructs an adaptive manifold according to updated projections. The learning processes of projections, representation, and manifold thus mutually enhance each other, leading to a powerful data representation. Efficient optimization procedures are proposed, which generate non-increasing objective value sequence with theoretical convergence guarantee. Extensive experimental results confirm the effectiveness of proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FFTLasso: Large-Scale LASSO in the Fourier Domain Semantically Coherent Co-Segmentation and Reconstruction of Dynamic Scenes Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces Joint Gap Detection and Inpainting of Line Drawings Wetness and Color from a Single Multispectral Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1