{"title":"永久不等式的推广及其在计数和优化中的应用","authors":"Nima Anari, S. Gharan","doi":"10.1145/3055399.3055469","DOIUrl":null,"url":null,"abstract":"A polynomial pΕℝ[z1,…,zn] is real stable if it has no roots in the upper-half complex plane. Gurvits's permanent inequality gives a lower bound on the coefficient of the z1z2…zn monomial of a real stable polynomial p with nonnegative coefficients. This fundamental inequality has been used to attack several counting and optimization problems. Here, we study a more general question: Given a stable multilinear polynomial p with nonnegative coefficients and a set of monomials S, we show that if the polynomial obtained by summing up all monomials in S is real stable, then we can lower bound the sum of coefficients of monomials of p that are in S. We also prove generalizations of this theorem to (real stable) polynomials that are not multilinear. We use our theorem to give a new proof of Schrijver's inequality on the number of perfect matchings of a regular bipartite graph, generalize a recent result of Nikolov and Singh, and give deterministic polynomial time approximation algorithms for several counting problems.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"1131 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"A generalization of permanent inequalities and applications in counting and optimization\",\"authors\":\"Nima Anari, S. Gharan\",\"doi\":\"10.1145/3055399.3055469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A polynomial pΕℝ[z1,…,zn] is real stable if it has no roots in the upper-half complex plane. Gurvits's permanent inequality gives a lower bound on the coefficient of the z1z2…zn monomial of a real stable polynomial p with nonnegative coefficients. This fundamental inequality has been used to attack several counting and optimization problems. Here, we study a more general question: Given a stable multilinear polynomial p with nonnegative coefficients and a set of monomials S, we show that if the polynomial obtained by summing up all monomials in S is real stable, then we can lower bound the sum of coefficients of monomials of p that are in S. We also prove generalizations of this theorem to (real stable) polynomials that are not multilinear. We use our theorem to give a new proof of Schrijver's inequality on the number of perfect matchings of a regular bipartite graph, generalize a recent result of Nikolov and Singh, and give deterministic polynomial time approximation algorithms for several counting problems.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"1131 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A generalization of permanent inequalities and applications in counting and optimization
A polynomial pΕℝ[z1,…,zn] is real stable if it has no roots in the upper-half complex plane. Gurvits's permanent inequality gives a lower bound on the coefficient of the z1z2…zn monomial of a real stable polynomial p with nonnegative coefficients. This fundamental inequality has been used to attack several counting and optimization problems. Here, we study a more general question: Given a stable multilinear polynomial p with nonnegative coefficients and a set of monomials S, we show that if the polynomial obtained by summing up all monomials in S is real stable, then we can lower bound the sum of coefficients of monomials of p that are in S. We also prove generalizations of this theorem to (real stable) polynomials that are not multilinear. We use our theorem to give a new proof of Schrijver's inequality on the number of perfect matchings of a regular bipartite graph, generalize a recent result of Nikolov and Singh, and give deterministic polynomial time approximation algorithms for several counting problems.