尼日利亚的抗虫豇豆:作物改良计划的事前经济评估

D. Phillip, Alejandro Nin Pratt, P. Zambrano, U. Wood-Sichra, E. Kato, J. Komen, H. Hanson, J. Falck-Zepeda, J. Chambers
{"title":"尼日利亚的抗虫豇豆:作物改良计划的事前经济评估","authors":"D. Phillip, Alejandro Nin Pratt, P. Zambrano, U. Wood-Sichra, E. Kato, J. Komen, H. Hanson, J. Falck-Zepeda, J. Chambers","doi":"10.2499/p15738coll2.133541","DOIUrl":null,"url":null,"abstract":"Since oil prices’ decline in 2014, agriculture has received renewed interest in Nigeria as a key sector for achieving sustainable growth and generating foreign exchange. One of the identified obstacles to achieving these goals is the need to improve agricultural productivity. Cowpea is one of the priority crops identified for productivity improvement. Currently cowpea yields are below 900 kg/ha, but it has been shown that with the right technology, these yields could potentially double. One of the main biotic constraints for cowpea is the infestation of the insect pod borer (Maruca Vitrata). No conventional variety has been developed to resist this pest, but with the use of biotechnology and the sustained collaboration of national and international partners over many years, there is now a genetically modified pod-borer-resistant (or more generally insect-resistant) cowpea. This paper estimates the potential economic benefits of adopting this new technology and the cost that Nigeria will incur if this adoption is delayed. The analysis is conducted using an economic surplus partial equilibrium model run with the newly developed DREAMpy software, data drawn from the Nigeria General Household Survey 2015–2016, estimations using these data, and other local sources. The estimations show that if the insect-resistant cowpea is planted in 2020, the net present-value benefits for producers and consumers would be around US$350 million, 70 percent of which would be accrued by producers. The distribution of benefits by region show that Sudan-Sahel will accrue the most benefits, given the relative concentration of cowpea in this region and the estimated higher adoption rates and yield changes. Almost half of producers’ total benefit will go to large producers, who represent only 20 percent of all cowpea producers, while small producers, representing half of all cowpea producers, will receive 24 percent of the benefit. Additionally, the analysis shows that a five-year regulatory delay will decrease the estimated benefits by around 35 percent. While Nigeria already has in place a competent biosafety system that will most likely ensure that these regulatory delays will not materialize, these estimations highlight the importance of having an evidence-based, efficient, predictable, and transparent regulatory system to ensure that the expected economic benefits are realized.","PeriodicalId":11894,"journal":{"name":"EngRN: Biomaterials (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Insect-Resistant Cowpea in Nigeria: An Ex Ante Economic Assessment of a Crop Improvement Initiative\",\"authors\":\"D. Phillip, Alejandro Nin Pratt, P. Zambrano, U. Wood-Sichra, E. Kato, J. Komen, H. Hanson, J. Falck-Zepeda, J. Chambers\",\"doi\":\"10.2499/p15738coll2.133541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since oil prices’ decline in 2014, agriculture has received renewed interest in Nigeria as a key sector for achieving sustainable growth and generating foreign exchange. One of the identified obstacles to achieving these goals is the need to improve agricultural productivity. Cowpea is one of the priority crops identified for productivity improvement. Currently cowpea yields are below 900 kg/ha, but it has been shown that with the right technology, these yields could potentially double. One of the main biotic constraints for cowpea is the infestation of the insect pod borer (Maruca Vitrata). No conventional variety has been developed to resist this pest, but with the use of biotechnology and the sustained collaboration of national and international partners over many years, there is now a genetically modified pod-borer-resistant (or more generally insect-resistant) cowpea. This paper estimates the potential economic benefits of adopting this new technology and the cost that Nigeria will incur if this adoption is delayed. The analysis is conducted using an economic surplus partial equilibrium model run with the newly developed DREAMpy software, data drawn from the Nigeria General Household Survey 2015–2016, estimations using these data, and other local sources. The estimations show that if the insect-resistant cowpea is planted in 2020, the net present-value benefits for producers and consumers would be around US$350 million, 70 percent of which would be accrued by producers. The distribution of benefits by region show that Sudan-Sahel will accrue the most benefits, given the relative concentration of cowpea in this region and the estimated higher adoption rates and yield changes. Almost half of producers’ total benefit will go to large producers, who represent only 20 percent of all cowpea producers, while small producers, representing half of all cowpea producers, will receive 24 percent of the benefit. Additionally, the analysis shows that a five-year regulatory delay will decrease the estimated benefits by around 35 percent. While Nigeria already has in place a competent biosafety system that will most likely ensure that these regulatory delays will not materialize, these estimations highlight the importance of having an evidence-based, efficient, predictable, and transparent regulatory system to ensure that the expected economic benefits are realized.\",\"PeriodicalId\":11894,\"journal\":{\"name\":\"EngRN: Biomaterials (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EngRN: Biomaterials (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2499/p15738coll2.133541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Biomaterials (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2499/p15738coll2.133541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

自2014年石油价格下跌以来,农业作为实现可持续增长和创造外汇的关键部门,在尼日利亚重新引起了人们的兴趣。实现这些目标的已知障碍之一是需要提高农业生产力。豇豆是提高生产力的优先作物之一。目前,豇豆的产量低于900公斤/公顷,但研究表明,通过正确的技术,这些产量可能会翻一番。豇豆的主要生物限制之一是豆荚螟(Maruca Vitrata)的侵扰。目前还没有开发出抵抗这种害虫的常规品种,但随着生物技术的使用以及国家和国际合作伙伴多年来的持续合作,现在有了一种抗豆荚螟(或更普遍的抗虫)的转基因豇豆。本文估计了采用这项新技术的潜在经济效益,以及尼日利亚如果推迟采用这项技术将产生的成本。分析使用经济盈余部分均衡模型,使用新开发的DREAMpy软件运行,数据来自2015 - - 2016年尼日利亚综合住户调查,使用这些数据进行估计,以及其他当地来源。估计表明,如果在2020年种植抗虫豇豆,生产者和消费者的净现值效益将达到3.5亿美元左右,其中70%将由生产者积累。按区域分配的收益表明,考虑到豇豆在苏丹-萨赫勒地区的相对集中以及估计较高的采用率和产量变化,该地区将获得最大的收益。几乎一半的生产者总收益将流向仅占所有豇豆生产者20%的大型生产者,而占所有豇豆生产者一半的小型生产者将获得24%的收益。此外,分析表明,五年的监管延迟将使估计的收益减少约35%。虽然尼日利亚已经建立了一个合格的生物安全系统,很可能确保这些监管延误不会成为现实,但这些估计强调了建立一个以证据为基础的、有效的、可预测的和透明的监管系统以确保实现预期的经济效益的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insect-Resistant Cowpea in Nigeria: An Ex Ante Economic Assessment of a Crop Improvement Initiative
Since oil prices’ decline in 2014, agriculture has received renewed interest in Nigeria as a key sector for achieving sustainable growth and generating foreign exchange. One of the identified obstacles to achieving these goals is the need to improve agricultural productivity. Cowpea is one of the priority crops identified for productivity improvement. Currently cowpea yields are below 900 kg/ha, but it has been shown that with the right technology, these yields could potentially double. One of the main biotic constraints for cowpea is the infestation of the insect pod borer (Maruca Vitrata). No conventional variety has been developed to resist this pest, but with the use of biotechnology and the sustained collaboration of national and international partners over many years, there is now a genetically modified pod-borer-resistant (or more generally insect-resistant) cowpea. This paper estimates the potential economic benefits of adopting this new technology and the cost that Nigeria will incur if this adoption is delayed. The analysis is conducted using an economic surplus partial equilibrium model run with the newly developed DREAMpy software, data drawn from the Nigeria General Household Survey 2015–2016, estimations using these data, and other local sources. The estimations show that if the insect-resistant cowpea is planted in 2020, the net present-value benefits for producers and consumers would be around US$350 million, 70 percent of which would be accrued by producers. The distribution of benefits by region show that Sudan-Sahel will accrue the most benefits, given the relative concentration of cowpea in this region and the estimated higher adoption rates and yield changes. Almost half of producers’ total benefit will go to large producers, who represent only 20 percent of all cowpea producers, while small producers, representing half of all cowpea producers, will receive 24 percent of the benefit. Additionally, the analysis shows that a five-year regulatory delay will decrease the estimated benefits by around 35 percent. While Nigeria already has in place a competent biosafety system that will most likely ensure that these regulatory delays will not materialize, these estimations highlight the importance of having an evidence-based, efficient, predictable, and transparent regulatory system to ensure that the expected economic benefits are realized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reversible Molecular Motional Switch Based on Circular Photoactive Protein Oligomers: Unexpected Photo-Induced Contraction 3D Bioprinting of Prevascularised Implants for the Repair of Critically Sized Bone Defects Super Absorbent Silk Fibroin Hydrogel Thiophene Donor for NIR-II Fluorescence Imaging Guided Photothermal/Photodynamic/Chemo Combination Therapy Efficient Delivery of Cytosolic Proteins by Protein-Hexahistidine-Metal Co-Assemblies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1