基于在线SCFNN的非线性系统辨识及其在物联网中的应用

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS International Journal of Grid and High Performance Computing Pub Date : 2023-01-20 DOI:10.4018/ijghpc.316153
Ye Lin, Yea-Shuan Huang, Rui-Chang Lin
{"title":"基于在线SCFNN的非线性系统辨识及其在物联网中的应用","authors":"Ye Lin, Yea-Shuan Huang, Rui-Chang Lin","doi":"10.4018/ijghpc.316153","DOIUrl":null,"url":null,"abstract":"In this paper, an online self-constructing fuzzy neural network (SCFNN) is proposed to solve four kinds of nonlinear dynamic system identification (NDSI) problems in the internet of things (IoTs). The SCFNN is capable of constructing a simple network without the need for knowledge of the NDSI. Thus, carefully setting conditions for the increased demands for fuzzy rules will make the architecture of the constructed SCFNN fairly simple. The applications of neural networks in IoTs are discussed. The authors also propose a new identification model for NDSI. Through an experimental example, it is proved that online learning can arrange membership functions in a more appropriate vector space. The performance of the online SCFNN is compared with both MLP and RBF through four extensive simulations. The comparison terms are convergence rate, training root mean square error (RMSE), test RMSE, and prediction accuracy (PA). The simulation results show that SCFNN is superior to MLP and RBF in NDSI problems.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"28 1","pages":"1-22"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear System Identification Based on an Online SCFNN With Applications in IoTs\",\"authors\":\"Ye Lin, Yea-Shuan Huang, Rui-Chang Lin\",\"doi\":\"10.4018/ijghpc.316153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an online self-constructing fuzzy neural network (SCFNN) is proposed to solve four kinds of nonlinear dynamic system identification (NDSI) problems in the internet of things (IoTs). The SCFNN is capable of constructing a simple network without the need for knowledge of the NDSI. Thus, carefully setting conditions for the increased demands for fuzzy rules will make the architecture of the constructed SCFNN fairly simple. The applications of neural networks in IoTs are discussed. The authors also propose a new identification model for NDSI. Through an experimental example, it is proved that online learning can arrange membership functions in a more appropriate vector space. The performance of the online SCFNN is compared with both MLP and RBF through four extensive simulations. The comparison terms are convergence rate, training root mean square error (RMSE), test RMSE, and prediction accuracy (PA). The simulation results show that SCFNN is superior to MLP and RBF in NDSI problems.\",\"PeriodicalId\":43565,\"journal\":{\"name\":\"International Journal of Grid and High Performance Computing\",\"volume\":\"28 1\",\"pages\":\"1-22\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijghpc.316153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.316153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在线自构造模糊神经网络(SCFNN),用于解决物联网(iot)中四种非线性动态系统辨识(NDSI)问题。SCFNN能够在不需要NDSI知识的情况下构建一个简单的网络。因此,仔细设置对模糊规则需求增加的条件将使构建的SCFNN的体系结构相当简单。讨论了神经网络在物联网中的应用。作者还提出了一种新的NDSI识别模型。通过一个实验实例,证明了在线学习可以将隶属度函数安排在更合适的向量空间中。通过四次广泛的仿真,比较了在线SCFNN与MLP和RBF的性能。比较项是收敛速度、训练均方根误差(RMSE)、检验均方根误差(RMSE)和预测精度(PA)。仿真结果表明,SCFNN在NDSI问题上优于MLP和RBF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear System Identification Based on an Online SCFNN With Applications in IoTs
In this paper, an online self-constructing fuzzy neural network (SCFNN) is proposed to solve four kinds of nonlinear dynamic system identification (NDSI) problems in the internet of things (IoTs). The SCFNN is capable of constructing a simple network without the need for knowledge of the NDSI. Thus, carefully setting conditions for the increased demands for fuzzy rules will make the architecture of the constructed SCFNN fairly simple. The applications of neural networks in IoTs are discussed. The authors also propose a new identification model for NDSI. Through an experimental example, it is proved that online learning can arrange membership functions in a more appropriate vector space. The performance of the online SCFNN is compared with both MLP and RBF through four extensive simulations. The comparison terms are convergence rate, training root mean square error (RMSE), test RMSE, and prediction accuracy (PA). The simulation results show that SCFNN is superior to MLP and RBF in NDSI problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
期刊最新文献
A Potent View on the Effects of E-Learning Pre-Cutoff Value Calculation Method for Accelerating Metric Space Outlier Detection A Security Method for Cloud Storage Using Data Classification An Energy-Efficient Multi-Channel Design for Distributed Wireless Sensor Networks On Allocation Algorithms for Manycore Systems With Network on Chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1