基于模型试验结果的浮桥波频响应数值研究

Yanlin Shao, X. Xiang, Jianyu Liu
{"title":"基于模型试验结果的浮桥波频响应数值研究","authors":"Yanlin Shao, X. Xiang, Jianyu Liu","doi":"10.1115/omae2019-96545","DOIUrl":null,"url":null,"abstract":"\n The wave-induced responses in the bridge girder of long floating bridges supported by pontoons are often dominated by the vertical modes, coupled horizontal modes and rotational modes about the longitudinal axis of the bridge girder. Pontoons with and without bottom flanges have been seen in recent floating bridge designs. Viscous flow separation around the sharp edges of the pontoon or the bottom flange may have strong influences on the hydrodynamic performance of the pontoon in terms of wave excitation, added mass and damping effects. Morison-type wave and current loads are normally included empirically in the early design phases to account for the viscous effects that cannot be covered by a potential-flow solution alone. Empirical drag coefficients and perhaps a correction to the potential-flow added mass are the inputs to such numerical models, which represents a part of the modelling uncertainties. Previous sensitivity studies using different drag coefficients in the ongoing Bjørnafjord floating bridge project in Norway indicate an influence up to 15% on the maximum vertical bending moment around the weak axis of the bridge girder.\n This paper contributes to the understanding of viscous effects on the hydrodynamic characteristics, e.g. the added mass, damping and wave excitation loads, of a floating bridge pontoon with and without keel plate. This is achieved by exploring existing model tests for floating bridge pontoons, performing 2D Computational Fluid Dynamic (CFD) analysis for pontoon cross sections and numerical calibration in a simplified frequency-domain model with linearized drag loads. Scale effects are also investigated through CFD analyses in model and full scales.","PeriodicalId":23567,"journal":{"name":"Volume 1: Offshore Technology; Offshore Geotechnics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Numerical Investigation of Wave-Frequency Pontoon Responses of a Floating Bridge Based on Model Test Results\",\"authors\":\"Yanlin Shao, X. Xiang, Jianyu Liu\",\"doi\":\"10.1115/omae2019-96545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The wave-induced responses in the bridge girder of long floating bridges supported by pontoons are often dominated by the vertical modes, coupled horizontal modes and rotational modes about the longitudinal axis of the bridge girder. Pontoons with and without bottom flanges have been seen in recent floating bridge designs. Viscous flow separation around the sharp edges of the pontoon or the bottom flange may have strong influences on the hydrodynamic performance of the pontoon in terms of wave excitation, added mass and damping effects. Morison-type wave and current loads are normally included empirically in the early design phases to account for the viscous effects that cannot be covered by a potential-flow solution alone. Empirical drag coefficients and perhaps a correction to the potential-flow added mass are the inputs to such numerical models, which represents a part of the modelling uncertainties. Previous sensitivity studies using different drag coefficients in the ongoing Bjørnafjord floating bridge project in Norway indicate an influence up to 15% on the maximum vertical bending moment around the weak axis of the bridge girder.\\n This paper contributes to the understanding of viscous effects on the hydrodynamic characteristics, e.g. the added mass, damping and wave excitation loads, of a floating bridge pontoon with and without keel plate. This is achieved by exploring existing model tests for floating bridge pontoons, performing 2D Computational Fluid Dynamic (CFD) analysis for pontoon cross sections and numerical calibration in a simplified frequency-domain model with linearized drag loads. Scale effects are also investigated through CFD analyses in model and full scales.\",\"PeriodicalId\":23567,\"journal\":{\"name\":\"Volume 1: Offshore Technology; Offshore Geotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Offshore Technology; Offshore Geotechnics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-96545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology; Offshore Geotechnics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-96545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

浮桥支撑的长浮桥主梁的波致响应通常由主梁纵向模态、耦合水平模态和围绕主梁纵轴的转动模态主导。在最近的浮桥设计中,有底法兰和没有底法兰的浮桥都有。在浮桥尖角或底翼缘周围的粘性流分离会对浮桥的水动力性能产生强烈的影响,包括波浪激励、附加质量和阻尼效应。莫里森型波浪和电流载荷通常在早期设计阶段包含在经验中,以考虑无法单独由势流解决方案覆盖的粘性效应。经验阻力系数和可能对潜在流附加质量的修正是这种数值模型的输入,这代表了建模不确定性的一部分。先前在挪威正在进行的Bjørnafjord浮桥项目中使用不同阻力系数的敏感性研究表明,对桥梁梁弱轴周围的最大垂直弯矩的影响高达15%。本文有助于理解黏性对有龙骨板和无龙骨板浮桥浮桥的水动力特性的影响,如附加质量、阻尼和波浪激励载荷。这是通过探索浮桥浮桥的现有模型试验,对浮桥横截面进行二维计算流体动力学(CFD)分析,并在线性化拖动载荷的简化频域模型中进行数值校准来实现的。通过模型和实尺的CFD分析,探讨了尺度效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Investigation of Wave-Frequency Pontoon Responses of a Floating Bridge Based on Model Test Results
The wave-induced responses in the bridge girder of long floating bridges supported by pontoons are often dominated by the vertical modes, coupled horizontal modes and rotational modes about the longitudinal axis of the bridge girder. Pontoons with and without bottom flanges have been seen in recent floating bridge designs. Viscous flow separation around the sharp edges of the pontoon or the bottom flange may have strong influences on the hydrodynamic performance of the pontoon in terms of wave excitation, added mass and damping effects. Morison-type wave and current loads are normally included empirically in the early design phases to account for the viscous effects that cannot be covered by a potential-flow solution alone. Empirical drag coefficients and perhaps a correction to the potential-flow added mass are the inputs to such numerical models, which represents a part of the modelling uncertainties. Previous sensitivity studies using different drag coefficients in the ongoing Bjørnafjord floating bridge project in Norway indicate an influence up to 15% on the maximum vertical bending moment around the weak axis of the bridge girder. This paper contributes to the understanding of viscous effects on the hydrodynamic characteristics, e.g. the added mass, damping and wave excitation loads, of a floating bridge pontoon with and without keel plate. This is achieved by exploring existing model tests for floating bridge pontoons, performing 2D Computational Fluid Dynamic (CFD) analysis for pontoon cross sections and numerical calibration in a simplified frequency-domain model with linearized drag loads. Scale effects are also investigated through CFD analyses in model and full scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Different Pile Installation Methods on Dense Sand Estimating Second Order Wave Drift Forces and Moments for Calculating DP Capability Plots A Conjoint Analysis of the Stability and Time-Domain Analysis on Floating Platform During Mooring Line Breaking Wave Propagation in CFD-Based Numerical Wave Tank CFD Analysis on Hydrodynamic Characteristics for Optimizing Torpedo Anchors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1