{"title":"溶胶-凝胶法制备nd掺杂TiO2薄膜的光电流响应和光催化活性","authors":"Xiaodong Zhu, Hui-jin Song, W. Feng, Guilan Wen, Haoyu Li, Jing Zhou","doi":"10.1515/jaots-2016-0190","DOIUrl":null,"url":null,"abstract":"Abstract The undoped and Nd-doped TiO2 thin films were prepared on indium-tin oxide (ITO) conductive glass by sol-gel method using dip-coating technique. The crystal structure, surface morphology, composition and surface chemical state of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS) , respectively. The results show that the undoped and Nd-doped TiO2 form anatase structure after calcining at 450 °C for 2 h and the crystalline size of TiO2 decreases by Nd doping. The photocurrent response of the thin films was tested by electrochemical workstation. The results show that all the Nd-doped TiO2 thin film electrodes demonstrate higher photocurrent response. The photocurrent density of Nd-doped TiO2 thin film electrodes increases at first and then decreases with the dopant concentration increasing from 0.5 at.% to 4 at.%. The maximum photocurrent density is obtained on 1 at.% Nd-doped TiO2 thin film electrode, which is 3.2 times higher than that obtained on undoped TiO2 thin film electrode. The photocatalytic activity of films was investigated by the degradation of methylene blue (MB). The results reveal that higher photocurrent causes higher photocatalytic activity. The degradation rate of 1 at.% Nd-doped TiO2 thin film increases about 60 % than that of undoped TiO2 thin film.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Photocurrent response and photocatalytic activity of Nd-doped TiO2 thin films prepared by sol-gel method\",\"authors\":\"Xiaodong Zhu, Hui-jin Song, W. Feng, Guilan Wen, Haoyu Li, Jing Zhou\",\"doi\":\"10.1515/jaots-2016-0190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The undoped and Nd-doped TiO2 thin films were prepared on indium-tin oxide (ITO) conductive glass by sol-gel method using dip-coating technique. The crystal structure, surface morphology, composition and surface chemical state of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS) , respectively. The results show that the undoped and Nd-doped TiO2 form anatase structure after calcining at 450 °C for 2 h and the crystalline size of TiO2 decreases by Nd doping. The photocurrent response of the thin films was tested by electrochemical workstation. The results show that all the Nd-doped TiO2 thin film electrodes demonstrate higher photocurrent response. The photocurrent density of Nd-doped TiO2 thin film electrodes increases at first and then decreases with the dopant concentration increasing from 0.5 at.% to 4 at.%. The maximum photocurrent density is obtained on 1 at.% Nd-doped TiO2 thin film electrode, which is 3.2 times higher than that obtained on undoped TiO2 thin film electrode. The photocatalytic activity of films was investigated by the degradation of methylene blue (MB). The results reveal that higher photocurrent causes higher photocatalytic activity. The degradation rate of 1 at.% Nd-doped TiO2 thin film increases about 60 % than that of undoped TiO2 thin film.\",\"PeriodicalId\":14870,\"journal\":{\"name\":\"Journal of Advanced Oxidation Technologies\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Oxidation Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jaots-2016-0190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2016-0190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
Photocurrent response and photocatalytic activity of Nd-doped TiO2 thin films prepared by sol-gel method
Abstract The undoped and Nd-doped TiO2 thin films were prepared on indium-tin oxide (ITO) conductive glass by sol-gel method using dip-coating technique. The crystal structure, surface morphology, composition and surface chemical state of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS) , respectively. The results show that the undoped and Nd-doped TiO2 form anatase structure after calcining at 450 °C for 2 h and the crystalline size of TiO2 decreases by Nd doping. The photocurrent response of the thin films was tested by electrochemical workstation. The results show that all the Nd-doped TiO2 thin film electrodes demonstrate higher photocurrent response. The photocurrent density of Nd-doped TiO2 thin film electrodes increases at first and then decreases with the dopant concentration increasing from 0.5 at.% to 4 at.%. The maximum photocurrent density is obtained on 1 at.% Nd-doped TiO2 thin film electrode, which is 3.2 times higher than that obtained on undoped TiO2 thin film electrode. The photocatalytic activity of films was investigated by the degradation of methylene blue (MB). The results reveal that higher photocurrent causes higher photocatalytic activity. The degradation rate of 1 at.% Nd-doped TiO2 thin film increases about 60 % than that of undoped TiO2 thin film.
期刊介绍:
The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs