纵向圆柱腔层状复合材料的应力状态研究

V. Miroshnikov
{"title":"纵向圆柱腔层状复合材料的应力状态研究","authors":"V. Miroshnikov","doi":"10.22034/JSM.2021.1879427.1502","DOIUrl":null,"url":null,"abstract":"The article presents the study of the stress state of a two-layer composite with a cylindrical cavity located parallel to the surfaces of the layers. Displacements are set on the cavity and the upper and lower boundaries of the upper and lower layers, respectively. The three-dimensional elasticity solution has been obtained by the analytical-numerical generalized Fourier method with respect to the system of Lame equations in local cylindrical coordinates associated with cavity and Cartesian coordinates associated with boundaries of the layers. The infinite systems of linear algebraic equations resulting from satisfying the boundary conditions are solved by the reduction method. As a result, displacements and stresses have been obtained at various points of the elastic body. We have compared the stress-strain state of a two-layer structure with a cylindrical cavity located in either of the layers. The analysis included various geometrical parameters and boundary functions; the results obtained were compared with a single-layer holed structure.","PeriodicalId":17126,"journal":{"name":"Journal of Solid Mechanics and Materials Engineering","volume":"1 1","pages":"297-304"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Stress State of the Layered Composite with a Longitudinal Cylindrical Cavity\",\"authors\":\"V. Miroshnikov\",\"doi\":\"10.22034/JSM.2021.1879427.1502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents the study of the stress state of a two-layer composite with a cylindrical cavity located parallel to the surfaces of the layers. Displacements are set on the cavity and the upper and lower boundaries of the upper and lower layers, respectively. The three-dimensional elasticity solution has been obtained by the analytical-numerical generalized Fourier method with respect to the system of Lame equations in local cylindrical coordinates associated with cavity and Cartesian coordinates associated with boundaries of the layers. The infinite systems of linear algebraic equations resulting from satisfying the boundary conditions are solved by the reduction method. As a result, displacements and stresses have been obtained at various points of the elastic body. We have compared the stress-strain state of a two-layer structure with a cylindrical cavity located in either of the layers. The analysis included various geometrical parameters and boundary functions; the results obtained were compared with a single-layer holed structure.\",\"PeriodicalId\":17126,\"journal\":{\"name\":\"Journal of Solid Mechanics and Materials Engineering\",\"volume\":\"1 1\",\"pages\":\"297-304\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid Mechanics and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/JSM.2021.1879427.1502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid Mechanics and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/JSM.2021.1879427.1502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了平行于两层复合材料表面的圆柱形空腔的应力状态。在空腔和上下两层的上下边界上分别设置位移。采用广义傅里叶解析-数值方法,得到了与空腔相关的局部柱坐标系和与层边界相关的笛卡尔坐标系下的拉梅方程组的三维弹性解。用约简法对满足边界条件的线性代数方程组进行了求解。结果,得到了弹性体各点的位移和应力。我们比较了两层结构的应力-应变状态和任一层的圆柱形空腔。分析包括各种几何参数和边界函数;所得结果与单层孔结构进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of Stress State of the Layered Composite with a Longitudinal Cylindrical Cavity
The article presents the study of the stress state of a two-layer composite with a cylindrical cavity located parallel to the surfaces of the layers. Displacements are set on the cavity and the upper and lower boundaries of the upper and lower layers, respectively. The three-dimensional elasticity solution has been obtained by the analytical-numerical generalized Fourier method with respect to the system of Lame equations in local cylindrical coordinates associated with cavity and Cartesian coordinates associated with boundaries of the layers. The infinite systems of linear algebraic equations resulting from satisfying the boundary conditions are solved by the reduction method. As a result, displacements and stresses have been obtained at various points of the elastic body. We have compared the stress-strain state of a two-layer structure with a cylindrical cavity located in either of the layers. The analysis included various geometrical parameters and boundary functions; the results obtained were compared with a single-layer holed structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dispersion of SH-Wave in a Heterogeneous Orthotropic Layer Sandwiched Between an Inhomogeneous Semi-Infinite Medium and a Heterogeneous Elastic Half-Space Large Deformation Hermitian Finite Element Coupled Thermoelasticity Analysis of Wave Propagation and Reflection in a Finite Domain Free Torsional Vibration Analysis of Hollow and Solid Non-Uniform Rotating Shafts Using Distributed and Lumped Modeling Technique Multi-Objective Optimization of Shot-Peening Parameters Using Modified Taguchi Technique Study on Vibration Band Gap Characteristics of a Branched Shape Periodic Structure Using the GDQR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1