{"title":"研究了不同加工工艺对碳纤维增强聚合物-竹纤维复合材料抗弯性能的影响","authors":"C. Liu, Xizhi Wu, Xianjun Li, Yiqiang Wu","doi":"10.1080/13287982.2022.2073954","DOIUrl":null,"url":null,"abstract":"ABSTRACT Carbon fiber-reinforced polymer (CFRP) laminates can significantly improve the flexural performance of the bamboo scrimber. This study evaluated the effects of three fabrication methods (one-time hot pressing, secondary hot pressing, and secondary cold pressing) on the flexural performance of CFRP-bamboo scrimber composites. Four-point bending experiments and theoretical analysis were conducted to study the failure modes, flexural performance, load-displacement relationships and strain curves over time of CFRP-bamboo scrimber composites. Besides a theoretical model was proposed to describe the flexural stiffness of CFRP-bamboo scrimber composites. The results indicated that the CFRP-bamboo scrimber composite specimens demonstrated four failure modes depending on the treatment methods. Overall, the static flexural modulus of the one-time hot pressed specimens was superior (up to 1.93 times that of the untreated bamboo scrimber specimen), and the static flexural strength of the secondary cold pressing specimens was superior (up to 3.58 times greater than that of the untreated bamboo scrimber specimen), although neither the static flexural modulus nor the static flexural strength of the secondary hot pressing specimens was satisfactory. Finally, it was illustrated that the theoretical models, established to describe the load-displacement, could accurately predict the experimental results.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation into the effects of various processing treatments on the flexural performance of carbon fiber reinforced polymer-bamboo scrimber composites\",\"authors\":\"C. Liu, Xizhi Wu, Xianjun Li, Yiqiang Wu\",\"doi\":\"10.1080/13287982.2022.2073954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Carbon fiber-reinforced polymer (CFRP) laminates can significantly improve the flexural performance of the bamboo scrimber. This study evaluated the effects of three fabrication methods (one-time hot pressing, secondary hot pressing, and secondary cold pressing) on the flexural performance of CFRP-bamboo scrimber composites. Four-point bending experiments and theoretical analysis were conducted to study the failure modes, flexural performance, load-displacement relationships and strain curves over time of CFRP-bamboo scrimber composites. Besides a theoretical model was proposed to describe the flexural stiffness of CFRP-bamboo scrimber composites. The results indicated that the CFRP-bamboo scrimber composite specimens demonstrated four failure modes depending on the treatment methods. Overall, the static flexural modulus of the one-time hot pressed specimens was superior (up to 1.93 times that of the untreated bamboo scrimber specimen), and the static flexural strength of the secondary cold pressing specimens was superior (up to 3.58 times greater than that of the untreated bamboo scrimber specimen), although neither the static flexural modulus nor the static flexural strength of the secondary hot pressing specimens was satisfactory. Finally, it was illustrated that the theoretical models, established to describe the load-displacement, could accurately predict the experimental results.\",\"PeriodicalId\":45617,\"journal\":{\"name\":\"Australian Journal of Structural Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13287982.2022.2073954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2022.2073954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Investigation into the effects of various processing treatments on the flexural performance of carbon fiber reinforced polymer-bamboo scrimber composites
ABSTRACT Carbon fiber-reinforced polymer (CFRP) laminates can significantly improve the flexural performance of the bamboo scrimber. This study evaluated the effects of three fabrication methods (one-time hot pressing, secondary hot pressing, and secondary cold pressing) on the flexural performance of CFRP-bamboo scrimber composites. Four-point bending experiments and theoretical analysis were conducted to study the failure modes, flexural performance, load-displacement relationships and strain curves over time of CFRP-bamboo scrimber composites. Besides a theoretical model was proposed to describe the flexural stiffness of CFRP-bamboo scrimber composites. The results indicated that the CFRP-bamboo scrimber composite specimens demonstrated four failure modes depending on the treatment methods. Overall, the static flexural modulus of the one-time hot pressed specimens was superior (up to 1.93 times that of the untreated bamboo scrimber specimen), and the static flexural strength of the secondary cold pressing specimens was superior (up to 3.58 times greater than that of the untreated bamboo scrimber specimen), although neither the static flexural modulus nor the static flexural strength of the secondary hot pressing specimens was satisfactory. Finally, it was illustrated that the theoretical models, established to describe the load-displacement, could accurately predict the experimental results.
期刊介绍:
The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.