{"title":"与被动变形触觉手套的3D交互","authors":"Thuong N. Hoang, Ross T. Smith, B. Thomas","doi":"10.1109/ISMAR.2013.6671822","DOIUrl":null,"url":null,"abstract":"This paper explores enhancing mobile immersive augmented reality manipulations by providing a sense of computer-captured touch through the use of a passive deformable haptic glove that responds to objects in the physical environment. The glove extends our existing pinch glove design with a Digital Foam sensor that is placed under the palm of the hand. The novel glove input device supports a range of touch-activated, precise, direct manipulation modeling techniques with tactile feedback including hole cutting, trench cutting, and chamfer creation. A user evaluation study comparing an image plane approach to our passive deformable haptic glove showed that the glove improves a user's task performance time, decreases error rate and erroneous hand movements, and reduces fatigue.","PeriodicalId":92225,"journal":{"name":"International Symposium on Mixed and Augmented Reality : (ISMAR) [proceedings]. IEEE and ACM International Symposium on Mixed and Augmented Reality","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"3D interactions with a passive deformable haptic glove\",\"authors\":\"Thuong N. Hoang, Ross T. Smith, B. Thomas\",\"doi\":\"10.1109/ISMAR.2013.6671822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores enhancing mobile immersive augmented reality manipulations by providing a sense of computer-captured touch through the use of a passive deformable haptic glove that responds to objects in the physical environment. The glove extends our existing pinch glove design with a Digital Foam sensor that is placed under the palm of the hand. The novel glove input device supports a range of touch-activated, precise, direct manipulation modeling techniques with tactile feedback including hole cutting, trench cutting, and chamfer creation. A user evaluation study comparing an image plane approach to our passive deformable haptic glove showed that the glove improves a user's task performance time, decreases error rate and erroneous hand movements, and reduces fatigue.\",\"PeriodicalId\":92225,\"journal\":{\"name\":\"International Symposium on Mixed and Augmented Reality : (ISMAR) [proceedings]. IEEE and ACM International Symposium on Mixed and Augmented Reality\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mixed and Augmented Reality : (ISMAR) [proceedings]. IEEE and ACM International Symposium on Mixed and Augmented Reality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMAR.2013.6671822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mixed and Augmented Reality : (ISMAR) [proceedings]. IEEE and ACM International Symposium on Mixed and Augmented Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR.2013.6671822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D interactions with a passive deformable haptic glove
This paper explores enhancing mobile immersive augmented reality manipulations by providing a sense of computer-captured touch through the use of a passive deformable haptic glove that responds to objects in the physical environment. The glove extends our existing pinch glove design with a Digital Foam sensor that is placed under the palm of the hand. The novel glove input device supports a range of touch-activated, precise, direct manipulation modeling techniques with tactile feedback including hole cutting, trench cutting, and chamfer creation. A user evaluation study comparing an image plane approach to our passive deformable haptic glove showed that the glove improves a user's task performance time, decreases error rate and erroneous hand movements, and reduces fatigue.