静电纺聚偏氟乙烯纳米纤维膜的介电行为和输运性能

IF 4.9 Q2 NANOSCIENCE & NANOTECHNOLOGY Nanotechnology, Science and Applications Pub Date : 2021-12-30 DOI:10.33425/2639-9466.1027
Sharvare Palwai, A. Batra, K. Arun, Ashok Vaseashta
{"title":"静电纺聚偏氟乙烯纳米纤维膜的介电行为和输运性能","authors":"Sharvare Palwai, A. Batra, K. Arun, Ashok Vaseashta","doi":"10.33425/2639-9466.1027","DOIUrl":null,"url":null,"abstract":"Poly (vinylidene fluoride) (PVDF) is a chemical resistance polymer with high ferroelectric, piezoelectric and pyroelectric properties. PVDF has been chosen due to its unique properties compared with others in the polymers family and is used in a variety of sensors and transducers. A PVDF nanofiber membrane with relatively uniform morphology was prepared by an electrospinning technique. The surface morphology of the electrospun PVDF nanofibers was observed by scanning electron microscopy (SEM). The microstructure of electrospun PVDF nanofibers was characterized by Fourier Transform Infrared spectroscopy (FTIR) in the range 400 to 4000 cm-1. The functional groups were identified in the membrane. Infrared vibrational spectroscopy (FTIR + Raman) curves revealed a ferroelectric β-phase in the un-annealed membrane intrinsically. It showed that the electrospinning technique induce crystalline and polar β-phase by applying an electric field to the PVDF polymer solution during high solution jet stretching. The membrane (7 mm x5 mm) with full-face copper electrodes was produced to form a capacitor for testing.","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dielectric Behavior and Transport Properties of Electrospun Polyvinylidene Fluoride Nanofiber Membrane\",\"authors\":\"Sharvare Palwai, A. Batra, K. Arun, Ashok Vaseashta\",\"doi\":\"10.33425/2639-9466.1027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poly (vinylidene fluoride) (PVDF) is a chemical resistance polymer with high ferroelectric, piezoelectric and pyroelectric properties. PVDF has been chosen due to its unique properties compared with others in the polymers family and is used in a variety of sensors and transducers. A PVDF nanofiber membrane with relatively uniform morphology was prepared by an electrospinning technique. The surface morphology of the electrospun PVDF nanofibers was observed by scanning electron microscopy (SEM). The microstructure of electrospun PVDF nanofibers was characterized by Fourier Transform Infrared spectroscopy (FTIR) in the range 400 to 4000 cm-1. The functional groups were identified in the membrane. Infrared vibrational spectroscopy (FTIR + Raman) curves revealed a ferroelectric β-phase in the un-annealed membrane intrinsically. It showed that the electrospinning technique induce crystalline and polar β-phase by applying an electric field to the PVDF polymer solution during high solution jet stretching. The membrane (7 mm x5 mm) with full-face copper electrodes was produced to form a capacitor for testing.\",\"PeriodicalId\":18881,\"journal\":{\"name\":\"Nanotechnology, Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology, Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33425/2639-9466.1027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology, Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33425/2639-9466.1027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

聚偏氟乙烯(PVDF)是一种具有高铁电性、压电性和热释电性的耐化学性聚合物。PVDF之所以被选择,是因为它与聚合物家族中的其他聚合物相比具有独特的性能,并用于各种传感器和换能器。采用静电纺丝技术制备了形貌相对均匀的聚偏氟乙烯纳米纤维膜。用扫描电镜观察了静电纺PVDF纳米纤维的表面形貌。利用傅里叶变换红外光谱(FTIR)对静电纺PVDF纳米纤维在400 ~ 4000 cm-1范围内的微观结构进行了表征。在膜上鉴定了功能基团。红外振动光谱(FTIR + Raman)曲线揭示了未退火膜本质上存在铁电β相。结果表明,静电纺丝技术通过在高射流拉伸过程中施加电场诱导PVDF聚合物溶液产生结晶相和极性β相。该膜(7mm x5mm)与全面铜电极被制作成一个电容器用于测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dielectric Behavior and Transport Properties of Electrospun Polyvinylidene Fluoride Nanofiber Membrane
Poly (vinylidene fluoride) (PVDF) is a chemical resistance polymer with high ferroelectric, piezoelectric and pyroelectric properties. PVDF has been chosen due to its unique properties compared with others in the polymers family and is used in a variety of sensors and transducers. A PVDF nanofiber membrane with relatively uniform morphology was prepared by an electrospinning technique. The surface morphology of the electrospun PVDF nanofibers was observed by scanning electron microscopy (SEM). The microstructure of electrospun PVDF nanofibers was characterized by Fourier Transform Infrared spectroscopy (FTIR) in the range 400 to 4000 cm-1. The functional groups were identified in the membrane. Infrared vibrational spectroscopy (FTIR + Raman) curves revealed a ferroelectric β-phase in the un-annealed membrane intrinsically. It showed that the electrospinning technique induce crystalline and polar β-phase by applying an electric field to the PVDF polymer solution during high solution jet stretching. The membrane (7 mm x5 mm) with full-face copper electrodes was produced to form a capacitor for testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology, Science and Applications
Nanotechnology, Science and Applications NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
11.70
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Nanotechnology, Science and Applications is an international, peer-reviewed, Open Access journal that focuses on the science of nanotechnology in a wide range of industrial and academic applications. The journal is characterized by the rapid reporting of reviews, original research, and application studies across all sectors, including engineering, optics, bio-medicine, cosmetics, textiles, resource sustainability and science. Applied research into nano-materials, particles, nano-structures and fabrication, diagnostics and analytics, drug delivery and toxicology constitute the primary direction of the journal.
期刊最新文献
Antibacterial, Antibiofilm, and Tooth Color Preservation Capacity of Magnesium Oxide Nanoparticles Varnish (in vitro Study). Evaluation of the Antimicrobial, Cytotoxic, and Physical Properties of Selected Nano-Complexes in Bovine Udder Inflammatory Pathogen Control. Antihistamine and Wound Healing Potential of Gold Nanoparticles Synthesized Using Bulbine frutescens (L.) Willd. The Chemical Modification to Improve Solubility of Chitosan and Its Derivatives Application, Preparation Method, Toxicity as a Nanoparticles. Factors Affecting the Synthesis of Bovine Serum Albumin Nanoparticles Using the Desolvation Method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1