{"title":"增材制造油田泵叶轮的鉴定及在役性能","authors":"R. Rettew, David Griffiths, R. Rettberg","doi":"10.4043/30961-ms","DOIUrl":null,"url":null,"abstract":"\n This article will outline the development, qualification, and in-field service trial of an additively manufactured 316 stainless steel pump impeller in chloride-containing water service for approximately 9 months. The pump impeller was manufactured by a hybrid directed energy deposition (DED) process. The novel process combines 5-axis DED and machining in one setup which brings significant reductions in lead time and other flexibility when compared to conventional manufacturing methods. Further benefits and challenges will be outlined. Qualification test results including mechanical properties, corrosion resistance, and select micrographs of the material will be shown. A post-service analysis of the performance of the component is also provided. Discussion of the applicability of 3D printing to end users, creating value in rapid component delivery and innovation, is included. A forward-looking assessment of the next steps for impeller design and manufacturing with additive manufacturing is also included.","PeriodicalId":11072,"journal":{"name":"Day 1 Mon, August 16, 2021","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualification and In-Service Performance of an Additively Manufactured Oilfield Pump Impeller\",\"authors\":\"R. Rettew, David Griffiths, R. Rettberg\",\"doi\":\"10.4043/30961-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article will outline the development, qualification, and in-field service trial of an additively manufactured 316 stainless steel pump impeller in chloride-containing water service for approximately 9 months. The pump impeller was manufactured by a hybrid directed energy deposition (DED) process. The novel process combines 5-axis DED and machining in one setup which brings significant reductions in lead time and other flexibility when compared to conventional manufacturing methods. Further benefits and challenges will be outlined. Qualification test results including mechanical properties, corrosion resistance, and select micrographs of the material will be shown. A post-service analysis of the performance of the component is also provided. Discussion of the applicability of 3D printing to end users, creating value in rapid component delivery and innovation, is included. A forward-looking assessment of the next steps for impeller design and manufacturing with additive manufacturing is also included.\",\"PeriodicalId\":11072,\"journal\":{\"name\":\"Day 1 Mon, August 16, 2021\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, August 16, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/30961-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, August 16, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/30961-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Qualification and In-Service Performance of an Additively Manufactured Oilfield Pump Impeller
This article will outline the development, qualification, and in-field service trial of an additively manufactured 316 stainless steel pump impeller in chloride-containing water service for approximately 9 months. The pump impeller was manufactured by a hybrid directed energy deposition (DED) process. The novel process combines 5-axis DED and machining in one setup which brings significant reductions in lead time and other flexibility when compared to conventional manufacturing methods. Further benefits and challenges will be outlined. Qualification test results including mechanical properties, corrosion resistance, and select micrographs of the material will be shown. A post-service analysis of the performance of the component is also provided. Discussion of the applicability of 3D printing to end users, creating value in rapid component delivery and innovation, is included. A forward-looking assessment of the next steps for impeller design and manufacturing with additive manufacturing is also included.