{"title":"随机势中布朗运动的大偏差","authors":"D. Boivin, Thi Thu Hien Lê","doi":"10.1051/ps/2020007","DOIUrl":null,"url":null,"abstract":"A quenched large deviation principle for Brownian motion in a stationary potential is proved. As the proofs are based on a method developed by Sznitman [Comm. Pure Appl. Math. 47 (1994) 1655–1688] for Brownian motion among obstacles with compact support no regularity conditions on the potential is needed. In particular, the sufficient conditions are verified by potentials with polynomially decaying correlations such as the classical potentials studied by Pastur [Teoret. Mat. Fiz. 32 (1977) 88–95] and Fukushima [J. Stat. Phys. 133 (2008) 639–657] and the potentials recently introduced by Lacoin [Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 1010–1028; 1029–1048].","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":"48 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Large deviations for Brownian motion in a random potential\",\"authors\":\"D. Boivin, Thi Thu Hien Lê\",\"doi\":\"10.1051/ps/2020007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quenched large deviation principle for Brownian motion in a stationary potential is proved. As the proofs are based on a method developed by Sznitman [Comm. Pure Appl. Math. 47 (1994) 1655–1688] for Brownian motion among obstacles with compact support no regularity conditions on the potential is needed. In particular, the sufficient conditions are verified by potentials with polynomially decaying correlations such as the classical potentials studied by Pastur [Teoret. Mat. Fiz. 32 (1977) 88–95] and Fukushima [J. Stat. Phys. 133 (2008) 639–657] and the potentials recently introduced by Lacoin [Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 1010–1028; 1029–1048].\",\"PeriodicalId\":51249,\"journal\":{\"name\":\"Esaim-Probability and Statistics\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Probability and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/ps/2020007\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/ps/2020007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Large deviations for Brownian motion in a random potential
A quenched large deviation principle for Brownian motion in a stationary potential is proved. As the proofs are based on a method developed by Sznitman [Comm. Pure Appl. Math. 47 (1994) 1655–1688] for Brownian motion among obstacles with compact support no regularity conditions on the potential is needed. In particular, the sufficient conditions are verified by potentials with polynomially decaying correlations such as the classical potentials studied by Pastur [Teoret. Mat. Fiz. 32 (1977) 88–95] and Fukushima [J. Stat. Phys. 133 (2008) 639–657] and the potentials recently introduced by Lacoin [Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 1010–1028; 1029–1048].
期刊介绍:
The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains.
Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics.
Long papers are very welcome.
Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.