{"title":"新型定制隔离系统在深水固井作业中降低漏失风险","authors":"Angela Gorman, Sandip P Patil, K. Agapiou","doi":"10.4043/31091-ms","DOIUrl":null,"url":null,"abstract":"\n Lost circulation (LC), commonly encountered in drilling and cementing operations, can be a costly problem that increases non-productive time, especially in highly permeable formations. When LC occurs during cementing, zonal isolation can be compromised. Risks associated with LC affect most applications, including offshore operations. This paper presents the evaluation of a new tailored spacer system (TSS) designed to effectively mitigate LC and its use in deepwater cementing operations to meet zonal isolation objectives.","PeriodicalId":11072,"journal":{"name":"Day 1 Mon, August 16, 2021","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lost Circulation Risk Mitigation in Deepwater Cementing Operations with a New Tailored Spacer System\",\"authors\":\"Angela Gorman, Sandip P Patil, K. Agapiou\",\"doi\":\"10.4043/31091-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Lost circulation (LC), commonly encountered in drilling and cementing operations, can be a costly problem that increases non-productive time, especially in highly permeable formations. When LC occurs during cementing, zonal isolation can be compromised. Risks associated with LC affect most applications, including offshore operations. This paper presents the evaluation of a new tailored spacer system (TSS) designed to effectively mitigate LC and its use in deepwater cementing operations to meet zonal isolation objectives.\",\"PeriodicalId\":11072,\"journal\":{\"name\":\"Day 1 Mon, August 16, 2021\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, August 16, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/31091-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, August 16, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31091-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lost Circulation Risk Mitigation in Deepwater Cementing Operations with a New Tailored Spacer System
Lost circulation (LC), commonly encountered in drilling and cementing operations, can be a costly problem that increases non-productive time, especially in highly permeable formations. When LC occurs during cementing, zonal isolation can be compromised. Risks associated with LC affect most applications, including offshore operations. This paper presents the evaluation of a new tailored spacer system (TSS) designed to effectively mitigate LC and its use in deepwater cementing operations to meet zonal isolation objectives.