{"title":"通过在Google Earth Engine云平台上使用LibSVM算法对Sentinel-1、2和PlanetScope卫星的图像进行分类,研究土耳其Mamak的绿色屋顶场景以减轻山洪影响","authors":"Sima Pouya, Majid Aghlmand, F. Karsli","doi":"10.37040/geografie.2022.008","DOIUrl":null,"url":null,"abstract":"This research aimed to increase the green space factor to mitigate flash flood effects on urban storm water runoff in the Ankara Mamak region and to minimize the damages by flash floods. The land use/cover map was first obtained by using the images of Sentinel-1, Sentinel-2, and PlanetScope satellites with the LIBSVM algorithm on the Google Earth Engine. The GSF value was then calculated and it was low (0.26) compared to world standards. This study was proposed as a solution for the flood disaster, using the extensive green roof scenario. After green roof conversion scenarios, the GSF value was recalculated. It was found to be above the minimum of green infrastructure that human settlements should achieve, regardless of density or land use (0.43). Offering high resolution images and the possibility of processing them via different algorithms of machine learning has revolutionized the environmental and urban-related studies as they help urban managers and planners to make decisions accurately and quickly.","PeriodicalId":35714,"journal":{"name":"Geografie-Sbornik CGS","volume":"12 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Looking into the green roof scenario to mitigate flash flood effects in Mamak, Turkey, via classifying images of Sentinel-1, 2, and PlanetScope satellites with LibSVM algorithm in Google Earth Engine cloud platform\",\"authors\":\"Sima Pouya, Majid Aghlmand, F. Karsli\",\"doi\":\"10.37040/geografie.2022.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aimed to increase the green space factor to mitigate flash flood effects on urban storm water runoff in the Ankara Mamak region and to minimize the damages by flash floods. The land use/cover map was first obtained by using the images of Sentinel-1, Sentinel-2, and PlanetScope satellites with the LIBSVM algorithm on the Google Earth Engine. The GSF value was then calculated and it was low (0.26) compared to world standards. This study was proposed as a solution for the flood disaster, using the extensive green roof scenario. After green roof conversion scenarios, the GSF value was recalculated. It was found to be above the minimum of green infrastructure that human settlements should achieve, regardless of density or land use (0.43). Offering high resolution images and the possibility of processing them via different algorithms of machine learning has revolutionized the environmental and urban-related studies as they help urban managers and planners to make decisions accurately and quickly.\",\"PeriodicalId\":35714,\"journal\":{\"name\":\"Geografie-Sbornik CGS\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geografie-Sbornik CGS\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.37040/geografie.2022.008\",\"RegionNum\":4,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geografie-Sbornik CGS","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.37040/geografie.2022.008","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY","Score":null,"Total":0}
Looking into the green roof scenario to mitigate flash flood effects in Mamak, Turkey, via classifying images of Sentinel-1, 2, and PlanetScope satellites with LibSVM algorithm in Google Earth Engine cloud platform
This research aimed to increase the green space factor to mitigate flash flood effects on urban storm water runoff in the Ankara Mamak region and to minimize the damages by flash floods. The land use/cover map was first obtained by using the images of Sentinel-1, Sentinel-2, and PlanetScope satellites with the LIBSVM algorithm on the Google Earth Engine. The GSF value was then calculated and it was low (0.26) compared to world standards. This study was proposed as a solution for the flood disaster, using the extensive green roof scenario. After green roof conversion scenarios, the GSF value was recalculated. It was found to be above the minimum of green infrastructure that human settlements should achieve, regardless of density or land use (0.43). Offering high resolution images and the possibility of processing them via different algorithms of machine learning has revolutionized the environmental and urban-related studies as they help urban managers and planners to make decisions accurately and quickly.