定时间歇需求与时变的顺序至水平

Dennis Prak, Patricia Rogetzer
{"title":"定时间歇需求与时变的顺序至水平","authors":"Dennis Prak, Patricia Rogetzer","doi":"10.2139/ssrn.3916846","DOIUrl":null,"url":null,"abstract":"Current intermittent demand inventory control models assume that the demand interval is memoryless: the probability of observing a positive demand does not depend on the time since the last demand oc-curred. Contrarily, several forecasting contributions suggest that demand intervals contain more distributional information. We find that the data of the M5 forecasting competition confirms this. Therefore, we propose an inventory control model that explicitly uses the full distributions of the demand sizes and intervals and thereby acknowledges that the probability of a demand occurrence may vary throughout the interval. To exploit this information, we also allow for time-varying order-up-to levels that flexibly adjust inventories according to the dynamic requirements. We derive the long-run average holding costs, non-stockout probability, order fill rate","PeriodicalId":11868,"journal":{"name":"Eur. J. Oper. Res.","volume":"19 1","pages":"1126-1136"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Timing intermittent demand with time-varying order-up-to levels\",\"authors\":\"Dennis Prak, Patricia Rogetzer\",\"doi\":\"10.2139/ssrn.3916846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current intermittent demand inventory control models assume that the demand interval is memoryless: the probability of observing a positive demand does not depend on the time since the last demand oc-curred. Contrarily, several forecasting contributions suggest that demand intervals contain more distributional information. We find that the data of the M5 forecasting competition confirms this. Therefore, we propose an inventory control model that explicitly uses the full distributions of the demand sizes and intervals and thereby acknowledges that the probability of a demand occurrence may vary throughout the interval. To exploit this information, we also allow for time-varying order-up-to levels that flexibly adjust inventories according to the dynamic requirements. We derive the long-run average holding costs, non-stockout probability, order fill rate\",\"PeriodicalId\":11868,\"journal\":{\"name\":\"Eur. J. Oper. Res.\",\"volume\":\"19 1\",\"pages\":\"1126-1136\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eur. J. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3916846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eur. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3916846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当前的间歇性需求库存控制模型假设需求间隔是无记忆的:观察到正需求的概率不依赖于上次需求发生后的时间。相反,一些预测贡献表明需求区间包含更多的分布信息。我们发现M5预测竞赛的数据证实了这一点。因此,我们提出了一个库存控制模型,该模型明确地使用了需求规模和间隔的完整分布,从而承认需求发生的概率在整个间隔中可能会变化。为了利用这些信息,我们还允许根据动态需求灵活调整库存的随时间变化的订货至最高水平。我们推导出长期平均持有成本,非缺货概率,订单填充率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Timing intermittent demand with time-varying order-up-to levels
Current intermittent demand inventory control models assume that the demand interval is memoryless: the probability of observing a positive demand does not depend on the time since the last demand oc-curred. Contrarily, several forecasting contributions suggest that demand intervals contain more distributional information. We find that the data of the M5 forecasting competition confirms this. Therefore, we propose an inventory control model that explicitly uses the full distributions of the demand sizes and intervals and thereby acknowledges that the probability of a demand occurrence may vary throughout the interval. To exploit this information, we also allow for time-varying order-up-to levels that flexibly adjust inventories according to the dynamic requirements. We derive the long-run average holding costs, non-stockout probability, order fill rate
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Risk budgeting portfolios from simulations Demand management for attended home delivery - A literature review Dynamic scheduling with uncertain job types A choice-based optimization approach for contracting in supply chains How to preempt attacks in multi-front conflict with limited resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1