{"title":"基于混合PCA-RBFNN模型的上市公司财务困境预测","authors":"Ying Sai, Shiwei Zhu, Zhang Tao","doi":"10.1109/ICNC.2008.778","DOIUrl":null,"url":null,"abstract":"This paper is to develop a hybrid PCA-RBFNN model for financial distress prediction of Chinese listed corporate. The proposed hybrid model integrates the principle component analysis (PCA) method and the radial-basis function neural network (RBFNN). Besides the traditional finance indicators, we introduce the cash-flow indicators which perfectly reflect the real-time financial situation of a corporate. In our proposed model, the PCA method is employed to select indicators and to reduce dimensions, and the RBFNN is used as a predicting tool for corporate financial situation. The experimental results suggest that the model has high prediction accuracy and execution efficiency.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"45 1","pages":"277-281"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting Financial Distress of Chinese Listed Corporate by a Hybrid PCA-RBFNN Model\",\"authors\":\"Ying Sai, Shiwei Zhu, Zhang Tao\",\"doi\":\"10.1109/ICNC.2008.778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is to develop a hybrid PCA-RBFNN model for financial distress prediction of Chinese listed corporate. The proposed hybrid model integrates the principle component analysis (PCA) method and the radial-basis function neural network (RBFNN). Besides the traditional finance indicators, we introduce the cash-flow indicators which perfectly reflect the real-time financial situation of a corporate. In our proposed model, the PCA method is employed to select indicators and to reduce dimensions, and the RBFNN is used as a predicting tool for corporate financial situation. The experimental results suggest that the model has high prediction accuracy and execution efficiency.\",\"PeriodicalId\":6404,\"journal\":{\"name\":\"2008 Fourth International Conference on Natural Computation\",\"volume\":\"45 1\",\"pages\":\"277-281\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fourth International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2008.778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Financial Distress of Chinese Listed Corporate by a Hybrid PCA-RBFNN Model
This paper is to develop a hybrid PCA-RBFNN model for financial distress prediction of Chinese listed corporate. The proposed hybrid model integrates the principle component analysis (PCA) method and the radial-basis function neural network (RBFNN). Besides the traditional finance indicators, we introduce the cash-flow indicators which perfectly reflect the real-time financial situation of a corporate. In our proposed model, the PCA method is employed to select indicators and to reduce dimensions, and the RBFNN is used as a predicting tool for corporate financial situation. The experimental results suggest that the model has high prediction accuracy and execution efficiency.