{"title":"平衡功率泄漏对抗fpga门级旁道分析","authors":"Xin Fang, Pei Luo, Yunsi Fei, M. Leeser","doi":"10.1109/ASAP.2015.7245724","DOIUrl":null,"url":null,"abstract":"Side-channel attacks have been a serious threat to the security of embedded cryptographic systems, and various countermeasures have been devised to mitigate the leakages. Power balance technologies such as wave dynamic differential logic (WDDL) aim to balance the power by introducing differential logic. However, different routing length leads to different capacitance of wire, and this hampers the strength of the power balance countermeasure. In this paper, we further balance the power of differential signals by manipulating the lower level primitives and placement constraints on a Field Programmable Gate Array (FPGA). We choose Advanced Encryption Standard (AES) as the encryption algorithm and apply Hamming weight model to demonstrate the amount of leakage for different implementations. Results show that our method not only efficiently mitigates the side-channel leakage but also saves FPGA logic block resources and dynamic power consumption.","PeriodicalId":6642,"journal":{"name":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"126 1","pages":"154-155"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Balance power leakage to fight against side-channel analysis at gate level in FPGAs\",\"authors\":\"Xin Fang, Pei Luo, Yunsi Fei, M. Leeser\",\"doi\":\"10.1109/ASAP.2015.7245724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Side-channel attacks have been a serious threat to the security of embedded cryptographic systems, and various countermeasures have been devised to mitigate the leakages. Power balance technologies such as wave dynamic differential logic (WDDL) aim to balance the power by introducing differential logic. However, different routing length leads to different capacitance of wire, and this hampers the strength of the power balance countermeasure. In this paper, we further balance the power of differential signals by manipulating the lower level primitives and placement constraints on a Field Programmable Gate Array (FPGA). We choose Advanced Encryption Standard (AES) as the encryption algorithm and apply Hamming weight model to demonstrate the amount of leakage for different implementations. Results show that our method not only efficiently mitigates the side-channel leakage but also saves FPGA logic block resources and dynamic power consumption.\",\"PeriodicalId\":6642,\"journal\":{\"name\":\"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"volume\":\"126 1\",\"pages\":\"154-155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2015.7245724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2015.7245724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Balance power leakage to fight against side-channel analysis at gate level in FPGAs
Side-channel attacks have been a serious threat to the security of embedded cryptographic systems, and various countermeasures have been devised to mitigate the leakages. Power balance technologies such as wave dynamic differential logic (WDDL) aim to balance the power by introducing differential logic. However, different routing length leads to different capacitance of wire, and this hampers the strength of the power balance countermeasure. In this paper, we further balance the power of differential signals by manipulating the lower level primitives and placement constraints on a Field Programmable Gate Array (FPGA). We choose Advanced Encryption Standard (AES) as the encryption algorithm and apply Hamming weight model to demonstrate the amount of leakage for different implementations. Results show that our method not only efficiently mitigates the side-channel leakage but also saves FPGA logic block resources and dynamic power consumption.