基于最优传输的卫星图像间颜色适应与去云

Zheng Zhang, Changmiao Hu, Ping Tang, T. Corpetti
{"title":"基于最优传输的卫星图像间颜色适应与去云","authors":"Zheng Zhang, Changmiao Hu, Ping Tang, T. Corpetti","doi":"10.1109/IGARSS.2019.8900388","DOIUrl":null,"url":null,"abstract":"Cloud-contaminated pixels exist ubiquitously in satellite images, which limit the usability of satellite images and increase the difficulty of image analysis. To reconstruct these pixels, a basic idea is to transfer cloud-free pixels from corresponding multi-temporal images to the target image, and the performance of this category of methods depends on the quality of information transfer between images. We propose in this work a novel pixel reconstruction method based on optimal transport. Our method first conducts an adaptive col-or transfer between multi-temporal images and then replaces cloud-contaminated pixels by transferred cloud-free pixels. The proposed method fully explores the potential of optimal transport to generate a more adaptive color transfer plan and thus ensure a high quality information transfer between images. Compared with other widely used methods, visual and statistical results on Landsat and MODIS images demonstrate the capacity of our method.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"36 1","pages":"787-790"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Color Adaptation and Cloud Removal between Satellite Images via Optimal Transport\",\"authors\":\"Zheng Zhang, Changmiao Hu, Ping Tang, T. Corpetti\",\"doi\":\"10.1109/IGARSS.2019.8900388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud-contaminated pixels exist ubiquitously in satellite images, which limit the usability of satellite images and increase the difficulty of image analysis. To reconstruct these pixels, a basic idea is to transfer cloud-free pixels from corresponding multi-temporal images to the target image, and the performance of this category of methods depends on the quality of information transfer between images. We propose in this work a novel pixel reconstruction method based on optimal transport. Our method first conducts an adaptive col-or transfer between multi-temporal images and then replaces cloud-contaminated pixels by transferred cloud-free pixels. The proposed method fully explores the potential of optimal transport to generate a more adaptive color transfer plan and thus ensure a high quality information transfer between images. Compared with other widely used methods, visual and statistical results on Landsat and MODIS images demonstrate the capacity of our method.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"36 1\",\"pages\":\"787-790\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8900388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8900388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

云污染像素在卫星图像中普遍存在,限制了卫星图像的可用性,增加了图像分析的难度。为了重建这些像素,一个基本思路是将相应多时相图像中的无云像素转移到目标图像中,这类方法的性能取决于图像之间信息传递的质量。本文提出了一种基于最优传输的像素重建方法。我们的方法首先在多时间图像之间进行自适应颜色或转移,然后用转移的无云像素替换被云污染的像素。该方法充分挖掘了最优传输的潜力,生成了更自适应的颜色传输方案,从而保证了图像之间高质量的信息传输。与其他常用方法相比,Landsat和MODIS图像的可视化和统计结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Color Adaptation and Cloud Removal between Satellite Images via Optimal Transport
Cloud-contaminated pixels exist ubiquitously in satellite images, which limit the usability of satellite images and increase the difficulty of image analysis. To reconstruct these pixels, a basic idea is to transfer cloud-free pixels from corresponding multi-temporal images to the target image, and the performance of this category of methods depends on the quality of information transfer between images. We propose in this work a novel pixel reconstruction method based on optimal transport. Our method first conducts an adaptive col-or transfer between multi-temporal images and then replaces cloud-contaminated pixels by transferred cloud-free pixels. The proposed method fully explores the potential of optimal transport to generate a more adaptive color transfer plan and thus ensure a high quality information transfer between images. Compared with other widely used methods, visual and statistical results on Landsat and MODIS images demonstrate the capacity of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1