人体运动的计算研究:第1部分,跟踪和运动合成

IF 3.8 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Foundations and Trends in Computer Graphics and Vision Pub Date : 2005-01-01 DOI:10.1561/0600000005
D. Forsyth, Okan Arikan, L. Ikemoto, J. F. O'Brien, Deva Ramanan
{"title":"人体运动的计算研究:第1部分,跟踪和运动合成","authors":"D. Forsyth, Okan Arikan, L. Ikemoto, J. F. O'Brien, Deva Ramanan","doi":"10.1561/0600000005","DOIUrl":null,"url":null,"abstract":"We review methods for kinematic tracking of the human body in video. The review is part of a projected book that is intended to cross-fertilize ideas about motion representation between the animation and computer vision communities. The review confines itself to the earlier stages of motion, focusing on tracking and motion synthesis; future material will cover activity representation and motion generation. In general, we take the position that tracking does not necessarily involve (as is usually thought) complex multimodal inference problems. Instead, there are two key problems, both easy to state. The first is lifting, where one must infer the configuration of the body in three dimensions from image data. Ambiguities in lifting can result in multimodal inference problem, and we review what little is known about the extent to which a lift is ambiguous. The second is data association, where one must determine which pixels in an image Full text available at: http://dx.doi.org/10.1561/0600000005","PeriodicalId":45662,"journal":{"name":"Foundations and Trends in Computer Graphics and Vision","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"206","resultStr":"{\"title\":\"Computational Studies of Human Motion: Part 1, Tracking and Motion Synthesis\",\"authors\":\"D. Forsyth, Okan Arikan, L. Ikemoto, J. F. O'Brien, Deva Ramanan\",\"doi\":\"10.1561/0600000005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review methods for kinematic tracking of the human body in video. The review is part of a projected book that is intended to cross-fertilize ideas about motion representation between the animation and computer vision communities. The review confines itself to the earlier stages of motion, focusing on tracking and motion synthesis; future material will cover activity representation and motion generation. In general, we take the position that tracking does not necessarily involve (as is usually thought) complex multimodal inference problems. Instead, there are two key problems, both easy to state. The first is lifting, where one must infer the configuration of the body in three dimensions from image data. Ambiguities in lifting can result in multimodal inference problem, and we review what little is known about the extent to which a lift is ambiguous. The second is data association, where one must determine which pixels in an image Full text available at: http://dx.doi.org/10.1561/0600000005\",\"PeriodicalId\":45662,\"journal\":{\"name\":\"Foundations and Trends in Computer Graphics and Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"206\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Computer Graphics and Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/0600000005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Computer Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/0600000005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 206

摘要

本文综述了视频中人体运动跟踪的方法。这篇评论是一本计划出版的书的一部分,这本书的目的是在动画和计算机视觉社区之间交流关于运动表示的想法。回顾仅限于运动的早期阶段,专注于跟踪和运动合成;未来的材料将涵盖活动表示和运动生成。一般来说,我们认为跟踪并不一定涉及(通常认为的)复杂的多模态推理问题。相反,有两个关键问题,都很容易说明。第一种是升降,必须从图像数据中推断出物体的三维结构。举的模糊性会导致多模态推理问题,我们回顾了关于举的模糊性的程度所知甚少。第二个是数据关联,其中必须确定图像中的哪些像素全文可在:http://dx.doi.org/10.1561/0600000005
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Studies of Human Motion: Part 1, Tracking and Motion Synthesis
We review methods for kinematic tracking of the human body in video. The review is part of a projected book that is intended to cross-fertilize ideas about motion representation between the animation and computer vision communities. The review confines itself to the earlier stages of motion, focusing on tracking and motion synthesis; future material will cover activity representation and motion generation. In general, we take the position that tracking does not necessarily involve (as is usually thought) complex multimodal inference problems. Instead, there are two key problems, both easy to state. The first is lifting, where one must infer the configuration of the body in three dimensions from image data. Ambiguities in lifting can result in multimodal inference problem, and we review what little is known about the extent to which a lift is ambiguous. The second is data association, where one must determine which pixels in an image Full text available at: http://dx.doi.org/10.1561/0600000005
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations and Trends in Computer Graphics and Vision
Foundations and Trends in Computer Graphics and Vision COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
31.20
自引率
0.00%
发文量
1
期刊介绍: The growth in all aspects of research in the last decade has led to a multitude of new publications and an exponential increase in published research. Finding a way through the excellent existing literature and keeping up to date has become a major time-consuming problem. Electronic publishing has given researchers instant access to more articles than ever before. But which articles are the essential ones that should be read to understand and keep abreast with developments of any topic? To address this problem Foundations and Trends® in Computer Graphics and Vision publishes high-quality survey and tutorial monographs of the field. Each issue of Foundations and Trends® in Computer Graphics and Vision comprises a 50-100 page monograph written by research leaders in the field. Monographs that give tutorial coverage of subjects, research retrospectives as well as survey papers that offer state-of-the-art reviews fall within the scope of the journal.
期刊最新文献
Semantic Image Segmentation: Two Decades of Research Learning-based Visual Compression Computational Imaging Through Atmospheric Turbulence Vision-Language Pre-training: Basics, Recent Advances, and Future Trends Towards Better User Studies in Computer Graphics and Vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1