基于虚拟引擎平台的协同飞机引擎初步设计,a部分:体系结构和方法

S. Reitenbach, Maximilian Vieweg, R. Becker, Carsten Hollmann, Florian Wolters, Jens Schmeink, T. Otten, M. Siggel
{"title":"基于虚拟引擎平台的协同飞机引擎初步设计,a部分:体系结构和方法","authors":"S. Reitenbach, Maximilian Vieweg, R. Becker, Carsten Hollmann, Florian Wolters, Jens Schmeink, T. Otten, M. Siggel","doi":"10.2514/6.2020-0867","DOIUrl":null,"url":null,"abstract":"As in many other industries, the sector of aircraft engines and gas turbines is also undergoing a change towards digitalization. The intention is to make digital technologies applicable over the entire life cycle of the product and thus improve planning, design, construction, assembly, operation, and maintenance. Intelligent digitalization technologies like the digital thread or digital twin will drastically change engineering and construction processes. Consequently, the preliminary aircraft engine design must also be embedded into the context of digitalization. As part of the projects PEGASUS and PERFECT, the German Aerospace Center (DLR) has started the development of the virtual engine platform GTlab (Gas Turbine Laboratory). Its modular architecture ensures a high degree of usability, expandability, and flexibility for the design and assessment of innovative next generation engine and gas turbine concepts. The purpose of this paper is to present the most important aspects of the GTlab framework and how they contribute to meet the requirements of preliminary aircraft engine design in the context of digitalization. A central topic is the digital representation of the engine system, which is realized by a central data model approach. This includes the geometric description of all engine components, as well as additional data such as thermodynamics, aerodynamics, structural characteristics and mass breakdown. In addition, the central data model enables an efficient management of the intricate data flow and the extensive amount of data transferred between the different disciplines and fidelity levels during the aircraft engine design. Further functionalities of the GTlab framework include the automated generation of 3-D geometries by means of a CAD kernel interface, the acquisition of material data via a material database and a standardized gas model interface. Besides the core functionalities, GTlab includes three major modules for the preliminary aircraft engine design from 0-D-performance up to 3-D. The detailed collaborative predesign proces by means of the framework is presented in part B, exemplary for a ultra high bypass turbofan suited to a middle of the market aircraft configuration.","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"5099 5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Collaborative Aircraft Engine Preliminary Design using a Virtual Engine Platform, Part A: Architecture and Methodology\",\"authors\":\"S. Reitenbach, Maximilian Vieweg, R. Becker, Carsten Hollmann, Florian Wolters, Jens Schmeink, T. Otten, M. Siggel\",\"doi\":\"10.2514/6.2020-0867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As in many other industries, the sector of aircraft engines and gas turbines is also undergoing a change towards digitalization. The intention is to make digital technologies applicable over the entire life cycle of the product and thus improve planning, design, construction, assembly, operation, and maintenance. Intelligent digitalization technologies like the digital thread or digital twin will drastically change engineering and construction processes. Consequently, the preliminary aircraft engine design must also be embedded into the context of digitalization. As part of the projects PEGASUS and PERFECT, the German Aerospace Center (DLR) has started the development of the virtual engine platform GTlab (Gas Turbine Laboratory). Its modular architecture ensures a high degree of usability, expandability, and flexibility for the design and assessment of innovative next generation engine and gas turbine concepts. The purpose of this paper is to present the most important aspects of the GTlab framework and how they contribute to meet the requirements of preliminary aircraft engine design in the context of digitalization. A central topic is the digital representation of the engine system, which is realized by a central data model approach. This includes the geometric description of all engine components, as well as additional data such as thermodynamics, aerodynamics, structural characteristics and mass breakdown. In addition, the central data model enables an efficient management of the intricate data flow and the extensive amount of data transferred between the different disciplines and fidelity levels during the aircraft engine design. Further functionalities of the GTlab framework include the automated generation of 3-D geometries by means of a CAD kernel interface, the acquisition of material data via a material database and a standardized gas model interface. Besides the core functionalities, GTlab includes three major modules for the preliminary aircraft engine design from 0-D-performance up to 3-D. The detailed collaborative predesign proces by means of the framework is presented in part B, exemplary for a ultra high bypass turbofan suited to a middle of the market aircraft configuration.\",\"PeriodicalId\":93413,\"journal\":{\"name\":\"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)\",\"volume\":\"5099 5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/6.2020-0867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2020-0867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

与许多其他行业一样,飞机发动机和燃气轮机行业也在经历数字化变革。其目的是使数字技术适用于产品的整个生命周期,从而改进规划、设计、建造、装配、操作和维护。像数字线程或数字孪生这样的智能数字化技术将彻底改变工程和建设过程。因此,飞机发动机的初步设计也必须嵌入到数字化的背景下。作为PEGASUS和PERFECT项目的一部分,德国航空航天中心(DLR)已经开始开发虚拟发动机平台GTlab(燃气轮机实验室)。其模块化架构确保了高度的可用性,可扩展性和灵活性,用于设计和评估创新的下一代发动机和燃气轮机概念。本文的目的是介绍GTlab框架的最重要方面,以及它们如何有助于满足数字化背景下飞机发动机初步设计的要求。一个中心主题是发动机系统的数字表示,这是通过中心数据模型方法实现的。这包括所有发动机部件的几何描述,以及热力学、空气动力学、结构特性和质量分解等附加数据。此外,在飞机发动机设计过程中,中心数据模型能够有效地管理复杂的数据流和在不同学科和保真度之间传输的大量数据。GTlab框架的进一步功能包括通过CAD内核接口自动生成三维几何图形,通过材料数据库和标准化气体模型接口获取材料数据。除了核心功能外,GTlab还包括三个主要模块,用于从0- d性能到3-D的初步飞机发动机设计。B部分详细介绍了基于该框架的协同预设计过程,以适合中型市场飞机配置的超高涵道比涡扇为例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Collaborative Aircraft Engine Preliminary Design using a Virtual Engine Platform, Part A: Architecture and Methodology
As in many other industries, the sector of aircraft engines and gas turbines is also undergoing a change towards digitalization. The intention is to make digital technologies applicable over the entire life cycle of the product and thus improve planning, design, construction, assembly, operation, and maintenance. Intelligent digitalization technologies like the digital thread or digital twin will drastically change engineering and construction processes. Consequently, the preliminary aircraft engine design must also be embedded into the context of digitalization. As part of the projects PEGASUS and PERFECT, the German Aerospace Center (DLR) has started the development of the virtual engine platform GTlab (Gas Turbine Laboratory). Its modular architecture ensures a high degree of usability, expandability, and flexibility for the design and assessment of innovative next generation engine and gas turbine concepts. The purpose of this paper is to present the most important aspects of the GTlab framework and how they contribute to meet the requirements of preliminary aircraft engine design in the context of digitalization. A central topic is the digital representation of the engine system, which is realized by a central data model approach. This includes the geometric description of all engine components, as well as additional data such as thermodynamics, aerodynamics, structural characteristics and mass breakdown. In addition, the central data model enables an efficient management of the intricate data flow and the extensive amount of data transferred between the different disciplines and fidelity levels during the aircraft engine design. Further functionalities of the GTlab framework include the automated generation of 3-D geometries by means of a CAD kernel interface, the acquisition of material data via a material database and a standardized gas model interface. Besides the core functionalities, GTlab includes three major modules for the preliminary aircraft engine design from 0-D-performance up to 3-D. The detailed collaborative predesign proces by means of the framework is presented in part B, exemplary for a ultra high bypass turbofan suited to a middle of the market aircraft configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
nCoV-BusterBot: Mission Simulation Lab Modules for Supporting a Lab-based Autonomous Systems Class in a Remote Learning Environment Experimental Force and Deformation Measurements of Bioinspired Flapping Wings in Ultra-Low Martian Density Environment. System Analyzer for a Bioinspired Mars Flight Vehicle System for Varying Mission Contexts. Burning Rate Characterization of Ammonium Perchlorate Pellets Containing Nano-Catalytic Additives The Effects of Turbulence-Kinetics Interactions on Reducing Chemical Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1