换热器管清洗新材料的研究

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Advances in Materials Science Pub Date : 2023-05-29 DOI:10.11648/j.am.20231202.11
Mohamed Khaled Mohamed Mohamed Hasanin
{"title":"换热器管清洗新材料的研究","authors":"Mohamed Khaled Mohamed Mohamed Hasanin","doi":"10.11648/j.am.20231202.11","DOIUrl":null,"url":null,"abstract":": This work represents new material can be used in cleaning process of heat exchanger tubes. Rubber projectiles are back bone of on line cleaning mechanism but it has poor mechanical and thermal features. Three materials have different properties with micro scale powder solid phase (aluminum, aluminum oxide and copper) had been added to (LSR) with different volume ratios (2%, 5%, 10%, 15%). specimens had been prepared with certain method and under specific conditions. Compression test was applied to identify stiffness factor of these new composite materials. Wear test was applied to finite the wear rare coefficient for these materials. Un certainty statistics was applied for measurements results so It's founded that with increasing volume ratio each of stiffness factor and wear rate coefficient increase linearity up to (15%) for all specimens. copper filler give best for stiffness that stiffness factor reaches about (30 (N/(mm/mm))) at volume ratio 15%) but poorest wear resistance with wear rate coefficient (9*10 -6 ) Mpa -1 inversely aluminum filler gives best results in wear resistance with wear rate coefficient (6*10 -6 ) Mpa -1 but weakest in stiffness test with stiffness factor (28 N/(mm/mm) at volume ratio 15%). Aluminum oxide was the best choice for new projectile material as it combines between good stiffness and wear","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of New Material for Deterging Heat Exchanger Tube\",\"authors\":\"Mohamed Khaled Mohamed Mohamed Hasanin\",\"doi\":\"10.11648/j.am.20231202.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This work represents new material can be used in cleaning process of heat exchanger tubes. Rubber projectiles are back bone of on line cleaning mechanism but it has poor mechanical and thermal features. Three materials have different properties with micro scale powder solid phase (aluminum, aluminum oxide and copper) had been added to (LSR) with different volume ratios (2%, 5%, 10%, 15%). specimens had been prepared with certain method and under specific conditions. Compression test was applied to identify stiffness factor of these new composite materials. Wear test was applied to finite the wear rare coefficient for these materials. Un certainty statistics was applied for measurements results so It's founded that with increasing volume ratio each of stiffness factor and wear rate coefficient increase linearity up to (15%) for all specimens. copper filler give best for stiffness that stiffness factor reaches about (30 (N/(mm/mm))) at volume ratio 15%) but poorest wear resistance with wear rate coefficient (9*10 -6 ) Mpa -1 inversely aluminum filler gives best results in wear resistance with wear rate coefficient (6*10 -6 ) Mpa -1 but weakest in stiffness test with stiffness factor (28 N/(mm/mm) at volume ratio 15%). Aluminum oxide was the best choice for new projectile material as it combines between good stiffness and wear\",\"PeriodicalId\":7327,\"journal\":{\"name\":\"Advances in Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.am.20231202.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.am.20231202.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本工作代表了新型材料可用于换热器管清洗工艺。橡胶弹丸是在线清洗机构的骨干,但其力学性能和热学性能较差。以不同体积比(2%、5%、10%、15%)向(LSR)中添加三种具有不同性能的微尺度粉末固相(铝、氧化铝和铜)。按一定的方法和条件制备标本。通过压缩试验确定了复合材料的刚度系数。通过磨损试验,确定了这些材料的磨损稀有系数。对测量结果进行不确定性统计,发现随着体积比的增大,所有试样的刚度系数和磨损率系数的线性度均增加到(15%)。铜填料的耐磨性最好,当体积比为15%时,其刚度系数约为(30 (N/(mm/mm))),但耐磨性最差,磨损率系数为(9*10 -6)Mpa -1;铝填料的耐磨性最好,磨损率系数为(6*10 -6)Mpa -1,刚度试验最差,当体积比为15%时,其刚度系数为28 N/(mm/mm))。氧化铝具有良好的刚度和耐磨性,是新型弹丸材料的最佳选择
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of New Material for Deterging Heat Exchanger Tube
: This work represents new material can be used in cleaning process of heat exchanger tubes. Rubber projectiles are back bone of on line cleaning mechanism but it has poor mechanical and thermal features. Three materials have different properties with micro scale powder solid phase (aluminum, aluminum oxide and copper) had been added to (LSR) with different volume ratios (2%, 5%, 10%, 15%). specimens had been prepared with certain method and under specific conditions. Compression test was applied to identify stiffness factor of these new composite materials. Wear test was applied to finite the wear rare coefficient for these materials. Un certainty statistics was applied for measurements results so It's founded that with increasing volume ratio each of stiffness factor and wear rate coefficient increase linearity up to (15%) for all specimens. copper filler give best for stiffness that stiffness factor reaches about (30 (N/(mm/mm))) at volume ratio 15%) but poorest wear resistance with wear rate coefficient (9*10 -6 ) Mpa -1 inversely aluminum filler gives best results in wear resistance with wear rate coefficient (6*10 -6 ) Mpa -1 but weakest in stiffness test with stiffness factor (28 N/(mm/mm) at volume ratio 15%). Aluminum oxide was the best choice for new projectile material as it combines between good stiffness and wear
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Materials Science
Advances in Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
自引率
7.70%
发文量
0
期刊最新文献
Mechanical Properties of Titanium Grade 1 After Laser Shock Wave Treatment Leading-Edge Polymer/Carbonaceous Nano-Reinforcement Nanocomposites—Opportunities for Space Sector The Effects of ArC Voltage and Shielding Gas Type on the Microstructure of Wire ArC Additively Manufactured 2209 Duplex Stainless Steel Mechanical and Corrosion Properties of Friction Stir Welded and Tungsten Inert Gas Welded Phosphor Bronze Numerical and Experimental Analysis of the Forging of a Bimetallic Crosshead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1