{"title":"改性螯合树脂对铝工业废水除氟的动力学研究","authors":"T. Robshaw, Sudhir Tukra, M. Ogden","doi":"10.5182/JAIE.29.104","DOIUrl":null,"url":null,"abstract":"Ion-exchange technology offers a low-energy potential route to the recovery of fluoride from aluminium industry leachate. This study presents an investigation into the kinetics of fluoride uptake from a simulant leachate and for comparison, from a simple NaF solution, using a lanthanum-loaded chelating resin. Experimental data were found to follow the Ho pseudo 2nd-order rate law and the Elovich equation, suggesting that, although multiple uptake mechanisms occurred on heterogeneous binding sites, the process was chemical reaction-controlled. The maximum observed rate constants were calculated as 0.760 ± 0.01 g mg-1 min-1 (NaF solution) and 0.0724 ± 0.0125 mg-1 min-1 (leachate). However, the maximum calculated equilibrium uptake for the leachate was 26.9 ± 0.2 mg g-1, which was almost twice as high as for NaF solution (14.0 ± 0.9 mg g-1).","PeriodicalId":16331,"journal":{"name":"Journal of ion exchange","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kinetics of Defluoridation of Aqueous Waste-streams of the Aluminium Industry with a Modified Chelating Resin\",\"authors\":\"T. Robshaw, Sudhir Tukra, M. Ogden\",\"doi\":\"10.5182/JAIE.29.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ion-exchange technology offers a low-energy potential route to the recovery of fluoride from aluminium industry leachate. This study presents an investigation into the kinetics of fluoride uptake from a simulant leachate and for comparison, from a simple NaF solution, using a lanthanum-loaded chelating resin. Experimental data were found to follow the Ho pseudo 2nd-order rate law and the Elovich equation, suggesting that, although multiple uptake mechanisms occurred on heterogeneous binding sites, the process was chemical reaction-controlled. The maximum observed rate constants were calculated as 0.760 ± 0.01 g mg-1 min-1 (NaF solution) and 0.0724 ± 0.0125 mg-1 min-1 (leachate). However, the maximum calculated equilibrium uptake for the leachate was 26.9 ± 0.2 mg g-1, which was almost twice as high as for NaF solution (14.0 ± 0.9 mg g-1).\",\"PeriodicalId\":16331,\"journal\":{\"name\":\"Journal of ion exchange\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ion exchange\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5182/JAIE.29.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ion exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5182/JAIE.29.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinetics of Defluoridation of Aqueous Waste-streams of the Aluminium Industry with a Modified Chelating Resin
Ion-exchange technology offers a low-energy potential route to the recovery of fluoride from aluminium industry leachate. This study presents an investigation into the kinetics of fluoride uptake from a simulant leachate and for comparison, from a simple NaF solution, using a lanthanum-loaded chelating resin. Experimental data were found to follow the Ho pseudo 2nd-order rate law and the Elovich equation, suggesting that, although multiple uptake mechanisms occurred on heterogeneous binding sites, the process was chemical reaction-controlled. The maximum observed rate constants were calculated as 0.760 ± 0.01 g mg-1 min-1 (NaF solution) and 0.0724 ± 0.0125 mg-1 min-1 (leachate). However, the maximum calculated equilibrium uptake for the leachate was 26.9 ± 0.2 mg g-1, which was almost twice as high as for NaF solution (14.0 ± 0.9 mg g-1).