基于支持向量机的破产内生预测

Jorge Zazueta Gutierrez, Andrea Chávez-Heredia, J. Zazueta‐Hernández
{"title":"基于支持向量机的破产内生预测","authors":"Jorge Zazueta Gutierrez, Andrea Chávez-Heredia, J. Zazueta‐Hernández","doi":"10.31235/osf.io/ehpt7","DOIUrl":null,"url":null,"abstract":"We build a global bankruptcy prediction model using a support vector machine trained only on firms' endogenous information in the form of financial ratios. The model is tested not only on entirely random unseen data but on samples taken from specific global regions and industries to test for prediction bias, achieving satisfactory prediction performance in all cases. While support vector machines are not easily interpretable, we explore variable importance and find it consistent with economic intuition.","PeriodicalId":42388,"journal":{"name":"International Journal of Combinatorial Optimization Problems and Informatics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endogenous Prediction of Bankruptcy using a Support Vector Machine\",\"authors\":\"Jorge Zazueta Gutierrez, Andrea Chávez-Heredia, J. Zazueta‐Hernández\",\"doi\":\"10.31235/osf.io/ehpt7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We build a global bankruptcy prediction model using a support vector machine trained only on firms' endogenous information in the form of financial ratios. The model is tested not only on entirely random unseen data but on samples taken from specific global regions and industries to test for prediction bias, achieving satisfactory prediction performance in all cases. While support vector machines are not easily interpretable, we explore variable importance and find it consistent with economic intuition.\",\"PeriodicalId\":42388,\"journal\":{\"name\":\"International Journal of Combinatorial Optimization Problems and Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Combinatorial Optimization Problems and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31235/osf.io/ehpt7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Combinatorial Optimization Problems and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31235/osf.io/ehpt7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们使用支持向量机建立了一个全球破产预测模型,该模型只训练了企业以财务比率形式的内生信息。该模型不仅在完全随机的看不见的数据上进行测试,而且在全球特定地区和行业的样本上进行测试,以测试预测偏差,在所有情况下都取得了令人满意的预测性能。虽然支持向量机不容易解释,但我们探索了变量重要性,并发现它与经济直觉一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Endogenous Prediction of Bankruptcy using a Support Vector Machine
We build a global bankruptcy prediction model using a support vector machine trained only on firms' endogenous information in the form of financial ratios. The model is tested not only on entirely random unseen data but on samples taken from specific global regions and industries to test for prediction bias, achieving satisfactory prediction performance in all cases. While support vector machines are not easily interpretable, we explore variable importance and find it consistent with economic intuition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
22
期刊最新文献
Personalized Education and Artificial Intelligence The Sustainable Fashion Revolution considering Circular Economy and targeting Generation Z by reusing garments with Acrylan and Terlenka A study on the Detection of Fake news in Spanish A Transformer-Based Multi-Domain Recommender System for E-commerce Quality of Service in Sustainable Development: A QoS-based Analysis of the United Nations Sustainable Development Goals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1