{"title":"低功耗多比特容错存储器优化","authors":"Seokjoong Kim, Matthew R. Guthaus","doi":"10.1109/ICCAD.2011.6105388","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a framework for analyzing Soft Error Rates (SER) including Multiple-Bit Upsets (MBU). Then, using this framework, we optimize the soft error tolerant voltage (Vtol) and interleaving distance (ID) of low-power, error-tolerant memories. Experimental results show that the total power can be reduced by an average of 30.5% with Vtol optimization and an average of 40.9% by simultaneously considering Vtol and ID together when compared to worst-case design practices.","PeriodicalId":6357,"journal":{"name":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Low-power multiple-bit upset tolerant memory optimization\",\"authors\":\"Seokjoong Kim, Matthew R. Guthaus\",\"doi\":\"10.1109/ICCAD.2011.6105388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a framework for analyzing Soft Error Rates (SER) including Multiple-Bit Upsets (MBU). Then, using this framework, we optimize the soft error tolerant voltage (Vtol) and interleaving distance (ID) of low-power, error-tolerant memories. Experimental results show that the total power can be reduced by an average of 30.5% with Vtol optimization and an average of 40.9% by simultaneously considering Vtol and ID together when compared to worst-case design practices.\",\"PeriodicalId\":6357,\"journal\":{\"name\":\"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2011.6105388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2011.6105388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we propose a framework for analyzing Soft Error Rates (SER) including Multiple-Bit Upsets (MBU). Then, using this framework, we optimize the soft error tolerant voltage (Vtol) and interleaving distance (ID) of low-power, error-tolerant memories. Experimental results show that the total power can be reduced by an average of 30.5% with Vtol optimization and an average of 40.9% by simultaneously considering Vtol and ID together when compared to worst-case design practices.