{"title":"用有序变量衡量风险","authors":"Silvia Figini, Paolo Giudici","doi":"10.21314/JOP.2013.122","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approach to measure risks, when the data available are expressed in an ordinal scale. As a result we obtain a new index of risk bounded between 0 and 1, that leads to a risk ordering that is consistent with a stochastic dominance approach. The proposed measure, being non parametric, can be applied to a wide range of problems, where data are ordinal and where a point estimate of risk is needed. We also provide a method to calculate confidence intervals for the proposed risk measure, in a Bayesian non parametric framework. In order to evaluate the actual performance of what we propose, we analyse a database provided by a telecommunication company, with the final aim of measuring operational risks, starting from a self-assessment questionnaire.","PeriodicalId":54030,"journal":{"name":"Journal of Operational Risk","volume":"5 1","pages":"35-43"},"PeriodicalIF":0.4000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Measuring risk with ordinal variables\",\"authors\":\"Silvia Figini, Paolo Giudici\",\"doi\":\"10.21314/JOP.2013.122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a novel approach to measure risks, when the data available are expressed in an ordinal scale. As a result we obtain a new index of risk bounded between 0 and 1, that leads to a risk ordering that is consistent with a stochastic dominance approach. The proposed measure, being non parametric, can be applied to a wide range of problems, where data are ordinal and where a point estimate of risk is needed. We also provide a method to calculate confidence intervals for the proposed risk measure, in a Bayesian non parametric framework. In order to evaluate the actual performance of what we propose, we analyse a database provided by a telecommunication company, with the final aim of measuring operational risks, starting from a self-assessment questionnaire.\",\"PeriodicalId\":54030,\"journal\":{\"name\":\"Journal of Operational Risk\",\"volume\":\"5 1\",\"pages\":\"35-43\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2013-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operational Risk\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.21314/JOP.2013.122\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operational Risk","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/JOP.2013.122","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
In this paper we propose a novel approach to measure risks, when the data available are expressed in an ordinal scale. As a result we obtain a new index of risk bounded between 0 and 1, that leads to a risk ordering that is consistent with a stochastic dominance approach. The proposed measure, being non parametric, can be applied to a wide range of problems, where data are ordinal and where a point estimate of risk is needed. We also provide a method to calculate confidence intervals for the proposed risk measure, in a Bayesian non parametric framework. In order to evaluate the actual performance of what we propose, we analyse a database provided by a telecommunication company, with the final aim of measuring operational risks, starting from a self-assessment questionnaire.
期刊介绍:
In December 2017, the Basel Committee published the final version of its standardized measurement approach (SMA) methodology, which will replace the approaches set out in Basel II (ie, the simpler standardized approaches and advanced measurement approach (AMA) that allowed use of internal models) from January 1, 2022. Independently of the Basel III rules, in order to manage and mitigate risks, they still need to be measurable by anyone. The operational risk industry needs to keep that in mind. While the purpose of the now defunct AMA was to find out the level of regulatory capital to protect a firm against operational risks, we still can – and should – use models to estimate operational risk economic capital. Without these, the task of managing and mitigating capital would be incredibly difficult. These internal models are now unshackled from regulatory requirements and can be optimized for managing the daily risks to which financial institutions are exposed. In addition, operational risk models can and should be used for stress tests and Comprehensive Capital Analysis and Review (CCAR). The Journal of Operational Risk also welcomes papers on nonfinancial risks as well as topics including, but not limited to, the following. The modeling and management of operational risk. Recent advances in techniques used to model operational risk, eg, copulas, correlation, aggregate loss distributions, Bayesian methods and extreme value theory. The pricing and hedging of operational risk and/or any risk transfer techniques. Data modeling external loss data, business control factors and scenario analysis. Models used to aggregate different types of data. Causal models that link key risk indicators and macroeconomic factors to operational losses. Regulatory issues, such as Basel II or any other local regulatory issue. Enterprise risk management. Cyber risk. Big data.