V. Favre, G. Tucker, C. Ritter, R. Sibille, P. Manuel, M. Frontzek, M. Kriener, Lin Yang, H. Berger, A. Magrez, N. Casati, I. Živković, H. Rønnow
{"title":"120°磁性结构inCu2OSO4","authors":"V. Favre, G. Tucker, C. Ritter, R. Sibille, P. Manuel, M. Frontzek, M. Kriener, Lin Yang, H. Berger, A. Magrez, N. Casati, I. Živković, H. Rønnow","doi":"10.1103/PhysRevB.102.094422","DOIUrl":null,"url":null,"abstract":"We report magnetic properties of a 3d$^9$ (Cu$^{2+}$) magnetic insulator Cu2OSO4 measured on both powder and single crystal. The magnetic atoms of this compound form layers, whose geometry can be described either as a system of chains coupled through dimers or as a Kagom\\'e lattice where every 3rd spin is replaced by a dimer. Specific heat and DC-susceptibility show a magnetic transition at 20 K, which is also confirmed by neutron scattering. Magnetic entropy extracted from the specific heat data is consistent with a $S=1/2$ degree of freedom per Cu$^{2+}$, and so is the effective moment extracted from DC-susceptibility. The ground state has been identified by means of neutron diffraction on both powder and single crystal and corresponds to a $\\sim120$ degree spin structure in which ferromagnetic intra-dimer alignment results in a net ferrimagnetic moment. No evidence is found for a change in lattice symmetry down to 2 K. Our results suggest that \\sample \\ represents a new type of model lattice with frustrated interactions where interplay between magnetic order, thermal and quantum fluctuations can be explored.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"37 Suppl 7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ferrimagnetic 120∘magnetic structure inCu2OSO4\",\"authors\":\"V. Favre, G. Tucker, C. Ritter, R. Sibille, P. Manuel, M. Frontzek, M. Kriener, Lin Yang, H. Berger, A. Magrez, N. Casati, I. Živković, H. Rønnow\",\"doi\":\"10.1103/PhysRevB.102.094422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report magnetic properties of a 3d$^9$ (Cu$^{2+}$) magnetic insulator Cu2OSO4 measured on both powder and single crystal. The magnetic atoms of this compound form layers, whose geometry can be described either as a system of chains coupled through dimers or as a Kagom\\\\'e lattice where every 3rd spin is replaced by a dimer. Specific heat and DC-susceptibility show a magnetic transition at 20 K, which is also confirmed by neutron scattering. Magnetic entropy extracted from the specific heat data is consistent with a $S=1/2$ degree of freedom per Cu$^{2+}$, and so is the effective moment extracted from DC-susceptibility. The ground state has been identified by means of neutron diffraction on both powder and single crystal and corresponds to a $\\\\sim120$ degree spin structure in which ferromagnetic intra-dimer alignment results in a net ferrimagnetic moment. No evidence is found for a change in lattice symmetry down to 2 K. Our results suggest that \\\\sample \\\\ represents a new type of model lattice with frustrated interactions where interplay between magnetic order, thermal and quantum fluctuations can be explored.\",\"PeriodicalId\":8511,\"journal\":{\"name\":\"arXiv: Strongly Correlated Electrons\",\"volume\":\"37 Suppl 7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevB.102.094422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.102.094422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We report magnetic properties of a 3d$^9$ (Cu$^{2+}$) magnetic insulator Cu2OSO4 measured on both powder and single crystal. The magnetic atoms of this compound form layers, whose geometry can be described either as a system of chains coupled through dimers or as a Kagom\'e lattice where every 3rd spin is replaced by a dimer. Specific heat and DC-susceptibility show a magnetic transition at 20 K, which is also confirmed by neutron scattering. Magnetic entropy extracted from the specific heat data is consistent with a $S=1/2$ degree of freedom per Cu$^{2+}$, and so is the effective moment extracted from DC-susceptibility. The ground state has been identified by means of neutron diffraction on both powder and single crystal and corresponds to a $\sim120$ degree spin structure in which ferromagnetic intra-dimer alignment results in a net ferrimagnetic moment. No evidence is found for a change in lattice symmetry down to 2 K. Our results suggest that \sample \ represents a new type of model lattice with frustrated interactions where interplay between magnetic order, thermal and quantum fluctuations can be explored.