时间序列数据的无参数基序发现

Pawan Nunthanid, V. Niennattrakul, C. Ratanamahatana
{"title":"时间序列数据的无参数基序发现","authors":"Pawan Nunthanid, V. Niennattrakul, C. Ratanamahatana","doi":"10.1109/ECTICON.2012.6254126","DOIUrl":null,"url":null,"abstract":"Time series motif discovery is an increasingly popular research area in time series mining whose main objective is to search for interesting patterns or motifs. A motif is a pair of time series subsequences, or two subsequences whose shapes are very similar to each other. Typical motif discovery algorithm requires a predefined motif length as its parameter. Discovering motif with arbitrary lengths introduces another problem, where selecting a suitable length for the motif is non-trivial since domain knowledge is often required. Thus, this work proposes a parameter-free motif discovery algorithm called k-Best Motif Discovery (kBMD) which requires no parameter as input, and as a result returns a set of all “Best Motif” that are ranked by our proposed scoring function which is based on similarity of motif locations and similarity of motif shapes.","PeriodicalId":6319,"journal":{"name":"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","volume":"12 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Parameter-free motif discovery for time series data\",\"authors\":\"Pawan Nunthanid, V. Niennattrakul, C. Ratanamahatana\",\"doi\":\"10.1109/ECTICON.2012.6254126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time series motif discovery is an increasingly popular research area in time series mining whose main objective is to search for interesting patterns or motifs. A motif is a pair of time series subsequences, or two subsequences whose shapes are very similar to each other. Typical motif discovery algorithm requires a predefined motif length as its parameter. Discovering motif with arbitrary lengths introduces another problem, where selecting a suitable length for the motif is non-trivial since domain knowledge is often required. Thus, this work proposes a parameter-free motif discovery algorithm called k-Best Motif Discovery (kBMD) which requires no parameter as input, and as a result returns a set of all “Best Motif” that are ranked by our proposed scoring function which is based on similarity of motif locations and similarity of motif shapes.\",\"PeriodicalId\":6319,\"journal\":{\"name\":\"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"volume\":\"12 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTICON.2012.6254126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTICON.2012.6254126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

时间序列基序发现是时间序列挖掘中一个日益流行的研究领域,其主要目的是寻找有趣的模式或基序。基序是一对时间序列子序列,或两个形状非常相似的子序列。典型的motif发现算法需要一个预定义的motif长度作为参数。发现任意长度的基序引入了另一个问题,其中为基序选择合适的长度是非平凡的,因为通常需要领域知识。因此,这项工作提出了一种无参数的motif发现算法,称为k-Best motif discovery (kBMD),该算法不需要参数作为输入,结果返回一组由我们提出的基于motif位置相似性和motif形状相似性的评分函数排名的所有“最佳motif”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter-free motif discovery for time series data
Time series motif discovery is an increasingly popular research area in time series mining whose main objective is to search for interesting patterns or motifs. A motif is a pair of time series subsequences, or two subsequences whose shapes are very similar to each other. Typical motif discovery algorithm requires a predefined motif length as its parameter. Discovering motif with arbitrary lengths introduces another problem, where selecting a suitable length for the motif is non-trivial since domain knowledge is often required. Thus, this work proposes a parameter-free motif discovery algorithm called k-Best Motif Discovery (kBMD) which requires no parameter as input, and as a result returns a set of all “Best Motif” that are ranked by our proposed scoring function which is based on similarity of motif locations and similarity of motif shapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power efficient output stages for high density implantable stimulators — Review and outlook Electrical characteristics of photodetector with transparent contact Time base distance estimation model for localization in wireless sensor network WiFi electronic nose for indoor air monitoring The effects of temperature and device demension of MOSFETs on the DC characteristics of CMOS inverter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1