{"title":"利用方铅矿与黄铜矿表面酸蚀特性的差异进行分离","authors":"Haiyun Xie, Jialing Chen, Pei Zhang, Likun Gao, Dianwen Liu, Luzheng Chen","doi":"10.1007/s12613-023-2654-1","DOIUrl":null,"url":null,"abstract":"<div><p>Galena (PbS) and chalcopyrite (CuFeS<sub>2</sub>) are sulfide minerals that exhibit good floatability characteristics. Thus, efficiently separating them via common flotation is challenging. Herein, a new method of surface sulfuric acid corrosion in conjunction with flotation separation was proposed, and the efficient separation of galena and chalcopyrite was successfully realized. Contact angle test results showed a substantial decrease in surface contact angle and a selective inhibition of surface floatability for corroded galena. Meanwhile, the contact angle and floatability of corroded chalcopyrite remained almost unaffected. Scanning electron microscope results confirmed that sulfuric acid corrosion led to the formation of a dense oxide layer on the galena surface, whereas the chalcopyrite surface remained unaltered. X-ray photoelectron spectroscopy results showed that the chemical state of S<sup>2−</sup> on the surface of corroded galena was oxidized to SO<span>\n <sup>2−</sup><sub>4</sub>\n \n </span>. A layer of hydrophilic PbSO<sub>4</sub> was formed on the surface, leading to a sharp decrease in galena floatability. Meanwhile, new hydrophobic CuS<sub>2</sub>, CuS, and Cu<sub>1−<i>x</i></sub>Fe<sub>1−<i>y</i></sub>,S<sub>2−<i>z</i></sub> species exhibiting good floatability were generated on the chalcopyrite surface. Finally, theoretical analysis results were further verified by corrosion–flotation separation experiments. The galena–chalcopyrite mixture was completely separated via flotation separation under appropriate corrosion acidity, corrosion temperature, and corrosion time. A novel approach has been outlined in this study, providing potential applications in the efficient separation of refractory copper–lead sulfide ore.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 11","pages":"2157 - 2168"},"PeriodicalIF":5.6000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separation of galena and chalcopyrite using the difference in their surface acid corrosion characteristics\",\"authors\":\"Haiyun Xie, Jialing Chen, Pei Zhang, Likun Gao, Dianwen Liu, Luzheng Chen\",\"doi\":\"10.1007/s12613-023-2654-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Galena (PbS) and chalcopyrite (CuFeS<sub>2</sub>) are sulfide minerals that exhibit good floatability characteristics. Thus, efficiently separating them via common flotation is challenging. Herein, a new method of surface sulfuric acid corrosion in conjunction with flotation separation was proposed, and the efficient separation of galena and chalcopyrite was successfully realized. Contact angle test results showed a substantial decrease in surface contact angle and a selective inhibition of surface floatability for corroded galena. Meanwhile, the contact angle and floatability of corroded chalcopyrite remained almost unaffected. Scanning electron microscope results confirmed that sulfuric acid corrosion led to the formation of a dense oxide layer on the galena surface, whereas the chalcopyrite surface remained unaltered. X-ray photoelectron spectroscopy results showed that the chemical state of S<sup>2−</sup> on the surface of corroded galena was oxidized to SO<span>\\n <sup>2−</sup><sub>4</sub>\\n \\n </span>. A layer of hydrophilic PbSO<sub>4</sub> was formed on the surface, leading to a sharp decrease in galena floatability. Meanwhile, new hydrophobic CuS<sub>2</sub>, CuS, and Cu<sub>1−<i>x</i></sub>Fe<sub>1−<i>y</i></sub>,S<sub>2−<i>z</i></sub> species exhibiting good floatability were generated on the chalcopyrite surface. Finally, theoretical analysis results were further verified by corrosion–flotation separation experiments. The galena–chalcopyrite mixture was completely separated via flotation separation under appropriate corrosion acidity, corrosion temperature, and corrosion time. A novel approach has been outlined in this study, providing potential applications in the efficient separation of refractory copper–lead sulfide ore.</p></div>\",\"PeriodicalId\":14030,\"journal\":{\"name\":\"International Journal of Minerals, Metallurgy, and Materials\",\"volume\":\"30 11\",\"pages\":\"2157 - 2168\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Minerals, Metallurgy, and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12613-023-2654-1\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2654-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Separation of galena and chalcopyrite using the difference in their surface acid corrosion characteristics
Galena (PbS) and chalcopyrite (CuFeS2) are sulfide minerals that exhibit good floatability characteristics. Thus, efficiently separating them via common flotation is challenging. Herein, a new method of surface sulfuric acid corrosion in conjunction with flotation separation was proposed, and the efficient separation of galena and chalcopyrite was successfully realized. Contact angle test results showed a substantial decrease in surface contact angle and a selective inhibition of surface floatability for corroded galena. Meanwhile, the contact angle and floatability of corroded chalcopyrite remained almost unaffected. Scanning electron microscope results confirmed that sulfuric acid corrosion led to the formation of a dense oxide layer on the galena surface, whereas the chalcopyrite surface remained unaltered. X-ray photoelectron spectroscopy results showed that the chemical state of S2− on the surface of corroded galena was oxidized to SO2−4. A layer of hydrophilic PbSO4 was formed on the surface, leading to a sharp decrease in galena floatability. Meanwhile, new hydrophobic CuS2, CuS, and Cu1−xFe1−y,S2−z species exhibiting good floatability were generated on the chalcopyrite surface. Finally, theoretical analysis results were further verified by corrosion–flotation separation experiments. The galena–chalcopyrite mixture was completely separated via flotation separation under appropriate corrosion acidity, corrosion temperature, and corrosion time. A novel approach has been outlined in this study, providing potential applications in the efficient separation of refractory copper–lead sulfide ore.
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.