全偏振l波段合成孔径雷达估算橡胶林林分生产力的树周长

Q3 Social Sciences Human Geographies Pub Date : 2022-03-24 DOI:10.3390/geographies2020012
B. Trisasongko, D. R. Panuju, A. Griffin, D. Paull
{"title":"全偏振l波段合成孔径雷达估算橡胶林林分生产力的树周长","authors":"B. Trisasongko, D. R. Panuju, A. Griffin, D. Paull","doi":"10.3390/geographies2020012","DOIUrl":null,"url":null,"abstract":"This article explores a potential exploitation of fully polarimetric radar data for the management of rubber plantations, specifically for predicting tree circumference as a crucial information need for sustainable plantation management. Conventional backscatter coefficients along with Eigen-based and model-based decomposition features served as the predictors in models of tree girth using ten regression approaches. The findings suggest that backscatter coefficients and Eigen-based decomposition features yielded lower accuracy than model-based decomposition features. Model-based decompositions, especially the Singh decomposition, provided the best accuracies when they were coupled with guided regularized random forests regression. This research demonstrates that L-band SAR data can provide an accurate estimation of rubber plantation tree girth, with an RMSE of about 8 cm.","PeriodicalId":38507,"journal":{"name":"Human Geographies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fully Polarimetric L-Band Synthetic Aperture Radar for the Estimation of Tree Girth as a Representative of Stand Productivity in Rubber Plantations\",\"authors\":\"B. Trisasongko, D. R. Panuju, A. Griffin, D. Paull\",\"doi\":\"10.3390/geographies2020012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article explores a potential exploitation of fully polarimetric radar data for the management of rubber plantations, specifically for predicting tree circumference as a crucial information need for sustainable plantation management. Conventional backscatter coefficients along with Eigen-based and model-based decomposition features served as the predictors in models of tree girth using ten regression approaches. The findings suggest that backscatter coefficients and Eigen-based decomposition features yielded lower accuracy than model-based decomposition features. Model-based decompositions, especially the Singh decomposition, provided the best accuracies when they were coupled with guided regularized random forests regression. This research demonstrates that L-band SAR data can provide an accurate estimation of rubber plantation tree girth, with an RMSE of about 8 cm.\",\"PeriodicalId\":38507,\"journal\":{\"name\":\"Human Geographies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Geographies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/geographies2020012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Geographies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geographies2020012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

摘要

本文探讨了全极化雷达数据在橡胶林管理中的潜在利用,特别是预测树木周长作为可持续橡胶林管理的关键信息需求。传统的后向散射系数以及基于特征和基于模型的分解特征作为预测因子,采用10种回归方法建立了树周长模型。研究结果表明,后向散射系数和基于特征的分解特征的精度低于基于模型的分解特征。基于模型的分解,特别是Singh分解,当它们与引导正则化随机森林回归相结合时,提供了最好的精度。研究表明,l波段SAR数据可以准确地估算橡胶林的树木周长,RMSE约为8 cm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fully Polarimetric L-Band Synthetic Aperture Radar for the Estimation of Tree Girth as a Representative of Stand Productivity in Rubber Plantations
This article explores a potential exploitation of fully polarimetric radar data for the management of rubber plantations, specifically for predicting tree circumference as a crucial information need for sustainable plantation management. Conventional backscatter coefficients along with Eigen-based and model-based decomposition features served as the predictors in models of tree girth using ten regression approaches. The findings suggest that backscatter coefficients and Eigen-based decomposition features yielded lower accuracy than model-based decomposition features. Model-based decompositions, especially the Singh decomposition, provided the best accuracies when they were coupled with guided regularized random forests regression. This research demonstrates that L-band SAR data can provide an accurate estimation of rubber plantation tree girth, with an RMSE of about 8 cm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Geographies
Human Geographies Social Sciences-Geography, Planning and Development
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
8 weeks
期刊最新文献
Residents and Stakeholder Opinions on Township Tourism in Langa, Cape Town, South Africa Spatio-Temporal Dynamics and Physico-Hydrological Trends in Rainfall, Runoff and Land Use in Paraíba Watershed Perspectives on Advanced Technologies in Spatial Data Collection and Analysis Contemporary Challenges in Destination Planning: A Geographical Typology Approach Spatiotemporal Dengue Fever Incidence Associated with Climate in a Brazilian Tropical Region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1