具有展向柔性的柔性箔的神经控制

IF 1 Q4 AUTOMATION & CONTROL SYSTEMS Mechatronic Systems and Control Pub Date : 2019-11-26 DOI:10.1115/dscc2019-9045
Annika-verena Haecker, Gabriel N. Carryon, J. Tangorra, T. Sattel
{"title":"具有展向柔性的柔性箔的神经控制","authors":"Annika-verena Haecker, Gabriel N. Carryon, J. Tangorra, T. Sattel","doi":"10.1115/dscc2019-9045","DOIUrl":null,"url":null,"abstract":"\n The ability to change the spatial distribution of a compliant foil’s flexural rigidity can enhance the foil’s swimming performance capabilities but pose challenges to neural-based control of these types of foils. The same property that makes these foil’s effective propulsors also makes them challenging to control with a neural oscillator, namely the variation in the mechanical properties will cause the amplitude and phase of the sensory feedback signal to vary depending upon the placement of the sensor. In this study we investigate the effect of sensor placement on the entrainment characteristics of a coupled-system consisting of a neural oscillator driving a series of compliant foils with spanwise flexibility (i.e. spatially varying mechanical properties in the dorsal-ventral direction). We find that acquiring sensory feedback from the foil’s stiff region produces a broader range of frequencies over which entrainment occurs compared to acquiring feedback from the compliant region of a foil. Additionally, we characterize the thrust and lift forces generated by spanwise foils as a function of the foil’s flapping frequency and flexural rigidity.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural-Based Control of Compliant Foils With Spanwise Flexibility\",\"authors\":\"Annika-verena Haecker, Gabriel N. Carryon, J. Tangorra, T. Sattel\",\"doi\":\"10.1115/dscc2019-9045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The ability to change the spatial distribution of a compliant foil’s flexural rigidity can enhance the foil’s swimming performance capabilities but pose challenges to neural-based control of these types of foils. The same property that makes these foil’s effective propulsors also makes them challenging to control with a neural oscillator, namely the variation in the mechanical properties will cause the amplitude and phase of the sensory feedback signal to vary depending upon the placement of the sensor. In this study we investigate the effect of sensor placement on the entrainment characteristics of a coupled-system consisting of a neural oscillator driving a series of compliant foils with spanwise flexibility (i.e. spatially varying mechanical properties in the dorsal-ventral direction). We find that acquiring sensory feedback from the foil’s stiff region produces a broader range of frequencies over which entrainment occurs compared to acquiring feedback from the compliant region of a foil. Additionally, we characterize the thrust and lift forces generated by spanwise foils as a function of the foil’s flapping frequency and flexural rigidity.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

改变柔顺型翼片弯曲刚度的空间分布可以提高翼片的游泳性能,但对基于神经控制的翼片提出了挑战。同样的特性,使得这些箔的有效推进也使它们具有挑战性的控制与一个神经振荡器,即在机械性能的变化将导致振幅和相位的感官反馈信号的变化取决于传感器的位置。在这项研究中,我们研究了传感器放置对一个耦合系统的夹带特性的影响,该系统由一个神经振荡器组成,驱动一系列具有展向柔性的柔性箔(即在背-腹方向上空间变化的机械性能)。我们发现,从箔的刚性区域获取感官反馈产生了一个更广泛的频率范围,在其中夹带发生相比,从箔的柔性区域获取反馈。此外,我们表征推力和升力产生的跨向箔作为箔的扑动频率和弯曲刚度的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural-Based Control of Compliant Foils With Spanwise Flexibility
The ability to change the spatial distribution of a compliant foil’s flexural rigidity can enhance the foil’s swimming performance capabilities but pose challenges to neural-based control of these types of foils. The same property that makes these foil’s effective propulsors also makes them challenging to control with a neural oscillator, namely the variation in the mechanical properties will cause the amplitude and phase of the sensory feedback signal to vary depending upon the placement of the sensor. In this study we investigate the effect of sensor placement on the entrainment characteristics of a coupled-system consisting of a neural oscillator driving a series of compliant foils with spanwise flexibility (i.e. spatially varying mechanical properties in the dorsal-ventral direction). We find that acquiring sensory feedback from the foil’s stiff region produces a broader range of frequencies over which entrainment occurs compared to acquiring feedback from the compliant region of a foil. Additionally, we characterize the thrust and lift forces generated by spanwise foils as a function of the foil’s flapping frequency and flexural rigidity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechatronic Systems and Control
Mechatronic Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.40
自引率
66.70%
发文量
27
期刊介绍: This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.
期刊最新文献
APPLICATION OF MULTIAXIAL CNC TECHNOLOGY IN PRECISION MOLD MANUFACTURING, 1-9. TRAJECTORY TRACKING OF NONHOLONOMIC CONSTRAINT MOBILE ROBOT BASED ON ADRC INTERNET INFORMATION COLLECTION AND DATA ANALYSIS BASED ON ARTIFICIAL INTELLIGENCE, 1-9. SI DESIGN ON TRACTION BRAKING CHARACTERISTICS TEST OF TRACTION MOTOR FOR RAIL TRANSIT, 1-9. MODELLING AND SIMULATION OF FRICTION RESISTANCE OF SUPERHYDROPHOBIC SURFACE MICROSTRUCTURE, 202-209.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1