双色强飞秒激光脉冲诱导晶体硅增强能量吸收和电子激发

M. Tani, Kakeru Sasaki, Yasushi Shinohara, Kenichi L. Ishikawa
{"title":"双色强飞秒激光脉冲诱导晶体硅增强能量吸收和电子激发","authors":"M. Tani, Kakeru Sasaki, Yasushi Shinohara, Kenichi L. Ishikawa","doi":"10.1109/CLEO/Europe-EQEC57999.2023.10232533","DOIUrl":null,"url":null,"abstract":"Over the past decades, the interaction between femtosecond intense lasers and semiconductors or dielectrics has been attracting significant attention as for high harmonic generation [1], high-quality laser micromachining without the thermal damage [2]. Several experimental and theoretical studies have reported that the use of two-color laser pulses enables highly efficient laser ablation of transparent materials compared to a single-color pump pulse [3], [4]. In the present work, to elucidate how two-color femtosecond laser pulses deposit energy to electrons in semiconductors and dielectrics, we utilize the time-dependent density functional theory (TDDFT) and examine the energy absorption of crystalline silicon under overlapped two-color [ultraviolet (UV) and infrared (IR)] intense femtosecond laser pulses as a function of relative intensity with the total fluence conserved. The deposited energy is dramatically enhanced by two-color laser field and maximized when they are equally mixed [see Fig. 1(a)]. The interplay between intraband electron motion in the valence band (before excitation) driven by the IR component and resonant valence-to-conduction interband excitation (carrier injection) induced by the UV component is identified as the underlying mechanism. Interestingly, the former plays an influential role, increases the excited electrons [see Fig. 1(b)]. The effect of multiple multiphoton absorption paths, relative phase of carrier waves, or intraband motion of the created carriers in the conduction band play a minor role.","PeriodicalId":19477,"journal":{"name":"Oceans","volume":"25 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Energy Absorption and Electron Excitation in Crystalline Silicon Induced by Two-Color Intense Femtosecond Laser Pulses\",\"authors\":\"M. Tani, Kakeru Sasaki, Yasushi Shinohara, Kenichi L. Ishikawa\",\"doi\":\"10.1109/CLEO/Europe-EQEC57999.2023.10232533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past decades, the interaction between femtosecond intense lasers and semiconductors or dielectrics has been attracting significant attention as for high harmonic generation [1], high-quality laser micromachining without the thermal damage [2]. Several experimental and theoretical studies have reported that the use of two-color laser pulses enables highly efficient laser ablation of transparent materials compared to a single-color pump pulse [3], [4]. In the present work, to elucidate how two-color femtosecond laser pulses deposit energy to electrons in semiconductors and dielectrics, we utilize the time-dependent density functional theory (TDDFT) and examine the energy absorption of crystalline silicon under overlapped two-color [ultraviolet (UV) and infrared (IR)] intense femtosecond laser pulses as a function of relative intensity with the total fluence conserved. The deposited energy is dramatically enhanced by two-color laser field and maximized when they are equally mixed [see Fig. 1(a)]. The interplay between intraband electron motion in the valence band (before excitation) driven by the IR component and resonant valence-to-conduction interband excitation (carrier injection) induced by the UV component is identified as the underlying mechanism. Interestingly, the former plays an influential role, increases the excited electrons [see Fig. 1(b)]. The effect of multiple multiphoton absorption paths, relative phase of carrier waves, or intraband motion of the created carriers in the conduction band play a minor role.\",\"PeriodicalId\":19477,\"journal\":{\"name\":\"Oceans\",\"volume\":\"25 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oceans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEO/Europe-EQEC57999.2023.10232533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEO/Europe-EQEC57999.2023.10232533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,飞秒强激光与半导体或电介质之间的相互作用已经引起了人们的极大关注,如高谐波产生[1],无热损伤的高质量激光微加工[2]。一些实验和理论研究报道,与单色泵浦脉冲相比,使用双色激光脉冲可以高效地对透明材料进行激光烧蚀[3],[4]。在本工作中,为了阐明双色飞秒激光脉冲如何将能量沉积到半导体和电介质中的电子中,我们利用时间依赖密度泛函理论(TDDFT),并研究了在重叠的双色[紫外(UV)和红外(IR)]强飞秒激光脉冲下晶体硅的能量吸收作为相对强度的函数,并且总通量守恒。双色激光场显著增强了沉积能量,当两者均匀混合时,沉积能量达到最大[见图1(a)]。红外成分驱动的价带(激发前)带内电子运动与紫外成分诱导的价导共振带间激发(载流子注入)之间的相互作用被确定为潜在的机制。有趣的是,前者起着重要的作用,增加了激发电子[见图1(b)]。多个多光子吸收路径、载波的相对相位或在导带中产生的载流子的带内运动的影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Energy Absorption and Electron Excitation in Crystalline Silicon Induced by Two-Color Intense Femtosecond Laser Pulses
Over the past decades, the interaction between femtosecond intense lasers and semiconductors or dielectrics has been attracting significant attention as for high harmonic generation [1], high-quality laser micromachining without the thermal damage [2]. Several experimental and theoretical studies have reported that the use of two-color laser pulses enables highly efficient laser ablation of transparent materials compared to a single-color pump pulse [3], [4]. In the present work, to elucidate how two-color femtosecond laser pulses deposit energy to electrons in semiconductors and dielectrics, we utilize the time-dependent density functional theory (TDDFT) and examine the energy absorption of crystalline silicon under overlapped two-color [ultraviolet (UV) and infrared (IR)] intense femtosecond laser pulses as a function of relative intensity with the total fluence conserved. The deposited energy is dramatically enhanced by two-color laser field and maximized when they are equally mixed [see Fig. 1(a)]. The interplay between intraband electron motion in the valence band (before excitation) driven by the IR component and resonant valence-to-conduction interband excitation (carrier injection) induced by the UV component is identified as the underlying mechanism. Interestingly, the former plays an influential role, increases the excited electrons [see Fig. 1(b)]. The effect of multiple multiphoton absorption paths, relative phase of carrier waves, or intraband motion of the created carriers in the conduction band play a minor role.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Spatial and Developmental Policy Directions Affecting Marine Spatial Planning in the Northern Aegean Sea, Greece Hydrographic vs. Dynamic Description of a Basin: The Example of Baroclinic Motion in the Ionian Sea In-Water Photo Identification, Site Fidelity, and Seasonal Presence of Harbor Seals (Phoca vitulina richardii) in Burrows Pass, Fidalgo Island, Washington Regional Fluctuations in the Eastern Tropical North Pacific Oxygen Minimum Zone during the Late Holocene Reply to Hendawitharana et al. Comment on “Arulananthan et al. The Status of the Coral Reefs of the Jaffna Peninsula (Northern Sri Lanka), with 36 Coral Species New to Sri Lanka Confirmed by DNA Bar-Coding. Oceans 2021, 2, 509–529”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1