{"title":"基于U-Net模型的胸部x线图像分割","authors":"Mohammed Y. Kamil, Sahar A. Hashem","doi":"10.13164/mendel.2022.2.049","DOIUrl":null,"url":null,"abstract":"Medical imaging, such as chest X-rays, gives an acceptable image of lung functions. Manipulating these images by a radiologist is difficult, thus delaying the diagnosis. Coronavirus is a disease that affects the lung area. Lung segmentation has a significant function in assessing lung disorders. The process of segmentation has seen widespread use of deep learning algorithms. The U-Net is one of the most significant semantic segmentation frameworks for a convolutional neural network. In this paper, the proposed U-Net architecture is evaluated on 565 datasets divided into 500 training images and 65 validation images, For chest X-ray. The findings of the experiments demonstrate that the suggested strategy successfully achieved competitive outcomes with 91.47% and 89.18% accuracy, 0.7494 and 0.7480 IoU, 19.23% and 26.11% loss for training and validation images, respectively.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmentation of Chest X-Ray Images Using U-Net Model\",\"authors\":\"Mohammed Y. Kamil, Sahar A. Hashem\",\"doi\":\"10.13164/mendel.2022.2.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical imaging, such as chest X-rays, gives an acceptable image of lung functions. Manipulating these images by a radiologist is difficult, thus delaying the diagnosis. Coronavirus is a disease that affects the lung area. Lung segmentation has a significant function in assessing lung disorders. The process of segmentation has seen widespread use of deep learning algorithms. The U-Net is one of the most significant semantic segmentation frameworks for a convolutional neural network. In this paper, the proposed U-Net architecture is evaluated on 565 datasets divided into 500 training images and 65 validation images, For chest X-ray. The findings of the experiments demonstrate that the suggested strategy successfully achieved competitive outcomes with 91.47% and 89.18% accuracy, 0.7494 and 0.7480 IoU, 19.23% and 26.11% loss for training and validation images, respectively.\",\"PeriodicalId\":38293,\"journal\":{\"name\":\"Mendel\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mendel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13164/mendel.2022.2.049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mendel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13164/mendel.2022.2.049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Segmentation of Chest X-Ray Images Using U-Net Model
Medical imaging, such as chest X-rays, gives an acceptable image of lung functions. Manipulating these images by a radiologist is difficult, thus delaying the diagnosis. Coronavirus is a disease that affects the lung area. Lung segmentation has a significant function in assessing lung disorders. The process of segmentation has seen widespread use of deep learning algorithms. The U-Net is one of the most significant semantic segmentation frameworks for a convolutional neural network. In this paper, the proposed U-Net architecture is evaluated on 565 datasets divided into 500 training images and 65 validation images, For chest X-ray. The findings of the experiments demonstrate that the suggested strategy successfully achieved competitive outcomes with 91.47% and 89.18% accuracy, 0.7494 and 0.7480 IoU, 19.23% and 26.11% loss for training and validation images, respectively.