M. R. Amâncio, F. B. Pereira, J. Paludeto, Amanda Roberta Vergani, Odair Bison, F. S. B. Peres, E. Tambarussi
{"title":"桉树矮枝再生的遗传控制。","authors":"M. R. Amâncio, F. B. Pereira, J. Paludeto, Amanda Roberta Vergani, Odair Bison, F. S. B. Peres, E. Tambarussi","doi":"10.2478/sg-2020-0002","DOIUrl":null,"url":null,"abstract":"Abstract Forest companies prefer a coppice system as a silvicultural strategy owing to its economic and sustainability advantages compared to developing new plantations for second rotations. However, studies aiming to determine the selection of superior genetic material for this management strategy are scarce. In this study, we evaluated five clonal tests of Eucalyptus spp. located in Itatinga and Angatuba, São Paulo State, Brazil, to determine the genetic correlations and control of productivity for regrowth management in two rotations. The volume (m3) and survival of the Eucalyptus spp. clonal tests were determined for the two rotations at 5.5 years of age. The experiments were carried out in a randomized block design with six replicates, five plants per plot, and unbalanced treatments. The heritability in the normal scale ( h^n2 \\hat h_n^2 ) for the survival ranged from 0.056 to 0.11, the heritability in the broad sense ( h^g2 \\hat h_g^2 ) ranged from 0.205 to 0.334, and the genotypic correlation was positive and high (0.71-0.86), and statistically significant to the genetic means for the two rotations. The ranking of the best clones in the second rotation was similar (76 %) to their ranking in the first selection. Thus, for the evaluated material, there was no need for the second measurement to obtain accurate selection when managing a coppice system.","PeriodicalId":21834,"journal":{"name":"Silvae Genetica","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Genetic control of coppice regrowth in Eucalyptus spp.\",\"authors\":\"M. R. Amâncio, F. B. Pereira, J. Paludeto, Amanda Roberta Vergani, Odair Bison, F. S. B. Peres, E. Tambarussi\",\"doi\":\"10.2478/sg-2020-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Forest companies prefer a coppice system as a silvicultural strategy owing to its economic and sustainability advantages compared to developing new plantations for second rotations. However, studies aiming to determine the selection of superior genetic material for this management strategy are scarce. In this study, we evaluated five clonal tests of Eucalyptus spp. located in Itatinga and Angatuba, São Paulo State, Brazil, to determine the genetic correlations and control of productivity for regrowth management in two rotations. The volume (m3) and survival of the Eucalyptus spp. clonal tests were determined for the two rotations at 5.5 years of age. The experiments were carried out in a randomized block design with six replicates, five plants per plot, and unbalanced treatments. The heritability in the normal scale ( h^n2 \\\\hat h_n^2 ) for the survival ranged from 0.056 to 0.11, the heritability in the broad sense ( h^g2 \\\\hat h_g^2 ) ranged from 0.205 to 0.334, and the genotypic correlation was positive and high (0.71-0.86), and statistically significant to the genetic means for the two rotations. The ranking of the best clones in the second rotation was similar (76 %) to their ranking in the first selection. Thus, for the evaluated material, there was no need for the second measurement to obtain accurate selection when managing a coppice system.\",\"PeriodicalId\":21834,\"journal\":{\"name\":\"Silvae Genetica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Silvae Genetica\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2478/sg-2020-0002\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silvae Genetica","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2478/sg-2020-0002","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
Genetic control of coppice regrowth in Eucalyptus spp.
Abstract Forest companies prefer a coppice system as a silvicultural strategy owing to its economic and sustainability advantages compared to developing new plantations for second rotations. However, studies aiming to determine the selection of superior genetic material for this management strategy are scarce. In this study, we evaluated five clonal tests of Eucalyptus spp. located in Itatinga and Angatuba, São Paulo State, Brazil, to determine the genetic correlations and control of productivity for regrowth management in two rotations. The volume (m3) and survival of the Eucalyptus spp. clonal tests were determined for the two rotations at 5.5 years of age. The experiments were carried out in a randomized block design with six replicates, five plants per plot, and unbalanced treatments. The heritability in the normal scale ( h^n2 \hat h_n^2 ) for the survival ranged from 0.056 to 0.11, the heritability in the broad sense ( h^g2 \hat h_g^2 ) ranged from 0.205 to 0.334, and the genotypic correlation was positive and high (0.71-0.86), and statistically significant to the genetic means for the two rotations. The ranking of the best clones in the second rotation was similar (76 %) to their ranking in the first selection. Thus, for the evaluated material, there was no need for the second measurement to obtain accurate selection when managing a coppice system.
期刊介绍:
Silvae Genetica is an international peer reviewed journal with more than 65 year tradition and experience in all fields of theoretical and applied Forest Genetics and Tree breeding. It continues "Zeitschrift für Forstgenetik und Forstpflanzenzüchtung" (Journal of Forest Genetics and Forest Tree Breeding) founded by W. LANGNER in 1951.