Y. Matviychuk, B. Mailhé, Xiao Chen, Qiu Wang, A. Kiraly, N. Strobel, M. Nadar
{"title":"学习基于多尺度补丁的x射线透视图像去噪方法","authors":"Y. Matviychuk, B. Mailhé, Xiao Chen, Qiu Wang, A. Kiraly, N. Strobel, M. Nadar","doi":"10.1109/ICIP.2016.7532775","DOIUrl":null,"url":null,"abstract":"Denoising is an indispensable step in processing low-dose X-ray fluoroscopic images that requires development of specialized high-quality algorithms able to operate in near real-time. We address this problem with an efficient deep learning approach based on the process-centric view of traditional iterative thresholding methods. We develop a novel trainable patch-based multiscale framework for sparse image representation. In a computationally efficient way, it allows us to accurately reconstruct important image features on multiple levels of decomposition with patch dictionaries of reduced size and complexity. The flexibility of the chosen machine learning approach allows us to tailor the learned basis for preserving important structural information in the image and noticeably minimize the amount of artifacts. Our denoising results obtained with real clinical data demonstrate significant quality improvement and are computed much faster in comparison with the BM3D algorithm.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"6 2 1","pages":"2330-2334"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Learning a multiscale patch-based representation for image denoising in X-RAY fluoroscopy\",\"authors\":\"Y. Matviychuk, B. Mailhé, Xiao Chen, Qiu Wang, A. Kiraly, N. Strobel, M. Nadar\",\"doi\":\"10.1109/ICIP.2016.7532775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Denoising is an indispensable step in processing low-dose X-ray fluoroscopic images that requires development of specialized high-quality algorithms able to operate in near real-time. We address this problem with an efficient deep learning approach based on the process-centric view of traditional iterative thresholding methods. We develop a novel trainable patch-based multiscale framework for sparse image representation. In a computationally efficient way, it allows us to accurately reconstruct important image features on multiple levels of decomposition with patch dictionaries of reduced size and complexity. The flexibility of the chosen machine learning approach allows us to tailor the learned basis for preserving important structural information in the image and noticeably minimize the amount of artifacts. Our denoising results obtained with real clinical data demonstrate significant quality improvement and are computed much faster in comparison with the BM3D algorithm.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"6 2 1\",\"pages\":\"2330-2334\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning a multiscale patch-based representation for image denoising in X-RAY fluoroscopy
Denoising is an indispensable step in processing low-dose X-ray fluoroscopic images that requires development of specialized high-quality algorithms able to operate in near real-time. We address this problem with an efficient deep learning approach based on the process-centric view of traditional iterative thresholding methods. We develop a novel trainable patch-based multiscale framework for sparse image representation. In a computationally efficient way, it allows us to accurately reconstruct important image features on multiple levels of decomposition with patch dictionaries of reduced size and complexity. The flexibility of the chosen machine learning approach allows us to tailor the learned basis for preserving important structural information in the image and noticeably minimize the amount of artifacts. Our denoising results obtained with real clinical data demonstrate significant quality improvement and are computed much faster in comparison with the BM3D algorithm.