用于视频超分辨率的门控循环网络

Santiago López-Tapia, Alice Lucas, R. Molina, A. Katsaggelos
{"title":"用于视频超分辨率的门控循环网络","authors":"Santiago López-Tapia, Alice Lucas, R. Molina, A. Katsaggelos","doi":"10.23919/Eusipco47968.2020.9287713","DOIUrl":null,"url":null,"abstract":"Despite the success of Recurrent Neural Networks in tasks involving temporal video processing, few works in Video Super-Resolution (VSR) have employed them. In this work we propose a new Gated Recurrent Convolutional Neural Network for VSR adapting some of the key components of a Gated Recurrent Unit. Our model employs a deformable attention module to align the features calculated at the previous time step with the ones in the current step and then uses a gated operation to combine them. This allows our model to effectively reuse previously calculated features and exploit longer temporal relationships between frames without the need of explicit motion compensation. The experimental validation shows that our approach outperforms current VSR learning based models in terms of perceptual quality and temporal consistency.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"13 1","pages":"700-704"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gated Recurrent Networks for Video Super Resolution\",\"authors\":\"Santiago López-Tapia, Alice Lucas, R. Molina, A. Katsaggelos\",\"doi\":\"10.23919/Eusipco47968.2020.9287713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the success of Recurrent Neural Networks in tasks involving temporal video processing, few works in Video Super-Resolution (VSR) have employed them. In this work we propose a new Gated Recurrent Convolutional Neural Network for VSR adapting some of the key components of a Gated Recurrent Unit. Our model employs a deformable attention module to align the features calculated at the previous time step with the ones in the current step and then uses a gated operation to combine them. This allows our model to effectively reuse previously calculated features and exploit longer temporal relationships between frames without the need of explicit motion compensation. The experimental validation shows that our approach outperforms current VSR learning based models in terms of perceptual quality and temporal consistency.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"13 1\",\"pages\":\"700-704\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

尽管递归神经网络在涉及时间视频处理的任务中取得了成功,但在视频超分辨率(VSR)领域很少使用它们。在这项工作中,我们提出了一种新的门控循环卷积神经网络用于VSR,该网络采用了门控循环单元的一些关键组件。我们的模型使用一个可变形的注意力模块将前一个时间步计算的特征与当前步骤的特征对齐,然后使用门控操作将它们组合起来。这使得我们的模型可以有效地重用先前计算的特征,并在不需要显式运动补偿的情况下利用帧之间更长的时间关系。实验验证表明,我们的方法在感知质量和时间一致性方面优于当前基于VSR学习的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gated Recurrent Networks for Video Super Resolution
Despite the success of Recurrent Neural Networks in tasks involving temporal video processing, few works in Video Super-Resolution (VSR) have employed them. In this work we propose a new Gated Recurrent Convolutional Neural Network for VSR adapting some of the key components of a Gated Recurrent Unit. Our model employs a deformable attention module to align the features calculated at the previous time step with the ones in the current step and then uses a gated operation to combine them. This allows our model to effectively reuse previously calculated features and exploit longer temporal relationships between frames without the need of explicit motion compensation. The experimental validation shows that our approach outperforms current VSR learning based models in terms of perceptual quality and temporal consistency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1