全垒打

Chih-Kai Kang, Chun-Han Lin, P. Hsiu, Ming-Syan Chen
{"title":"全垒打","authors":"Chih-Kai Kang, Chun-Han Lin, P. Hsiu, Ming-Syan Chen","doi":"10.1145/3218603.3218633","DOIUrl":null,"url":null,"abstract":"Self-powered intermittent systems featuring nonvolatile processors (NVPs) allow for accumulative execution in unstable power environments. However, frequent power failures may cause incorrect NVP execution results due to invalid data generated intermittently. This paper presents a HW/SW co-design, called HomeRun, to guarantee atomicity by ensuring that an uninterruptible program section can be run through at one execution. We design a HW module to ensure that a power pulse is sufficient for an atomic section, and develop a SW mechanism for programmers to protect atomic sections. The proposed design is validated through the development of a prototype pattern locking system. Experimental results demonstrate that the proposed design can completely guarantee atomicity and significantly improve the energy utilization of self-powered intermittent systems.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"HomeRun\",\"authors\":\"Chih-Kai Kang, Chun-Han Lin, P. Hsiu, Ming-Syan Chen\",\"doi\":\"10.1145/3218603.3218633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-powered intermittent systems featuring nonvolatile processors (NVPs) allow for accumulative execution in unstable power environments. However, frequent power failures may cause incorrect NVP execution results due to invalid data generated intermittently. This paper presents a HW/SW co-design, called HomeRun, to guarantee atomicity by ensuring that an uninterruptible program section can be run through at one execution. We design a HW module to ensure that a power pulse is sufficient for an atomic section, and develop a SW mechanism for programmers to protect atomic sections. The proposed design is validated through the development of a prototype pattern locking system. Experimental results demonstrate that the proposed design can completely guarantee atomicity and significantly improve the energy utilization of self-powered intermittent systems.\",\"PeriodicalId\":20456,\"journal\":{\"name\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3218603.3218633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HomeRun
Self-powered intermittent systems featuring nonvolatile processors (NVPs) allow for accumulative execution in unstable power environments. However, frequent power failures may cause incorrect NVP execution results due to invalid data generated intermittently. This paper presents a HW/SW co-design, called HomeRun, to guarantee atomicity by ensuring that an uninterruptible program section can be run through at one execution. We design a HW module to ensure that a power pulse is sufficient for an atomic section, and develop a SW mechanism for programmers to protect atomic sections. The proposed design is validated through the development of a prototype pattern locking system. Experimental results demonstrate that the proposed design can completely guarantee atomicity and significantly improve the energy utilization of self-powered intermittent systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adiabatic and Clock-Powered Circuits Power Macro-Models for High-Level Power Estimation Stand-By Power Reduction for SRAM Memories Leakage in CMOS Nanometric Technologies Evolution of Deep Submicron Bulk and SOI Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1