无标记增强现实中医疗设备拆装快速双特征跟踪方法

D. Roopa, S. Bose
{"title":"无标记增强现实中医疗设备拆装快速双特征跟踪方法","authors":"D. Roopa, S. Bose","doi":"10.1166/jmihi.2022.3944","DOIUrl":null,"url":null,"abstract":"Markerless Augmented Reality (MAR) is a superior technology that is currently used by the medical device assembler with aid in design, assembly, disassembly and maintenance operations. The medical assembler assembles the medical equipment based on the doctors requirement, they also\n maintains quality and sanitation of the equipment. The major research challenges in MAR are as follows: establish automatic registration parts, find and track the orientation of parts, and lack of depth and visual features. This work proposes a rapid dual feature tracking method i.e., combination\n of Visual Simultaneous Localization and Mapping (SLAM) and Matched Pairs Selection (MAPSEL). The main idea of this work is to attain high tracking accuracy using the combined method. To get a good depth image map, a Graph-Based Joint Bilateral with Sharpening Filter (GRB-JBF with SF) is proposed\n since depth images are noisy due to the dynamic change of environmental factors that affects tracking accuracy. Then, the best feature points are obtained for matching using Oriented Fast and Rotated Brief (ORB) as a feature detector, Fast Retina Key point with Histogram of Gradients (FREAK-HoG)\n as a feature descriptor, and Feature Matching using Rajsk’s distance. Finally, the virtual object is rendered based on 3D affine and projection transformation. This work computes the performance in terms of tracking accuracy, tracking time, and rotation error for different distances\n using MATLAB R2017b. From the observed results, it is perceived that the proposed method attained the least position error value about 0.1 cm to 0.3 cm. Also, rotation error is observed as minimal between 2.40 (Deg) to 3.10 and its average scale is observed as 2.7140. Further, the proposed\n combination consumes less time against frames compared with other combinations and obtained a higher tracking accuracy of about 95.14% for 180 tracked points. The witnessed outcomes from the proposed scheme display superior performance compared with existing methods.","PeriodicalId":49032,"journal":{"name":"Journal of Medical Imaging and Health Informatics","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Rapid Dual Feature Tracking Method for Medical Equipments Assembly and Disassembly in Markerless Augmented Reality\",\"authors\":\"D. Roopa, S. Bose\",\"doi\":\"10.1166/jmihi.2022.3944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Markerless Augmented Reality (MAR) is a superior technology that is currently used by the medical device assembler with aid in design, assembly, disassembly and maintenance operations. The medical assembler assembles the medical equipment based on the doctors requirement, they also\\n maintains quality and sanitation of the equipment. The major research challenges in MAR are as follows: establish automatic registration parts, find and track the orientation of parts, and lack of depth and visual features. This work proposes a rapid dual feature tracking method i.e., combination\\n of Visual Simultaneous Localization and Mapping (SLAM) and Matched Pairs Selection (MAPSEL). The main idea of this work is to attain high tracking accuracy using the combined method. To get a good depth image map, a Graph-Based Joint Bilateral with Sharpening Filter (GRB-JBF with SF) is proposed\\n since depth images are noisy due to the dynamic change of environmental factors that affects tracking accuracy. Then, the best feature points are obtained for matching using Oriented Fast and Rotated Brief (ORB) as a feature detector, Fast Retina Key point with Histogram of Gradients (FREAK-HoG)\\n as a feature descriptor, and Feature Matching using Rajsk’s distance. Finally, the virtual object is rendered based on 3D affine and projection transformation. This work computes the performance in terms of tracking accuracy, tracking time, and rotation error for different distances\\n using MATLAB R2017b. From the observed results, it is perceived that the proposed method attained the least position error value about 0.1 cm to 0.3 cm. Also, rotation error is observed as minimal between 2.40 (Deg) to 3.10 and its average scale is observed as 2.7140. Further, the proposed\\n combination consumes less time against frames compared with other combinations and obtained a higher tracking accuracy of about 95.14% for 180 tracked points. The witnessed outcomes from the proposed scheme display superior performance compared with existing methods.\",\"PeriodicalId\":49032,\"journal\":{\"name\":\"Journal of Medical Imaging and Health Informatics\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jmihi.2022.3944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jmihi.2022.3944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无标记增强现实(MAR)是一项卓越的技术,目前被医疗设备组装商用于辅助设计、组装、拆卸和维护操作。医疗装配工根据医生的要求组装医疗设备,并维护设备的质量和卫生。MAR的主要研究挑战是:建立自动配准零件,查找和跟踪零件的方向,缺乏深度和视觉特征。本文提出了一种快速双特征跟踪方法,即视觉同步定位与映射(SLAM)和匹配对选择(MAPSEL)相结合。本工作的主要思想是利用组合方法获得较高的跟踪精度。为了获得良好的深度图像映射,针对深度图像受环境因素动态变化影响而存在噪声的问题,提出了一种基于图的联合双边与锐化滤波器(GRB-JBF with SF)。然后,以定向快速旋转摘要(ORB)作为特征检测器,以梯度直方图(FREAK-HoG)作为特征描述符,利用Rajsk距离进行特征匹配,获得最佳特征点进行匹配。最后,基于三维仿射变换和投影变换对虚拟物体进行渲染。本文使用MATLAB R2017b计算了不同距离下的跟踪精度、跟踪时间和旋转误差的性能。从观测结果可以看出,该方法的位置误差最小,约为0.1 ~ 0.3 cm。此外,旋转误差在2.40(度)至3.10之间最小,其平均尺度为2.7140。此外,与其他组合相比,该组合对帧消耗的时间更少,对180个跟踪点的跟踪精度达到95.14%左右。与现有方法相比,该方案的实测结果显示出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Rapid Dual Feature Tracking Method for Medical Equipments Assembly and Disassembly in Markerless Augmented Reality
Markerless Augmented Reality (MAR) is a superior technology that is currently used by the medical device assembler with aid in design, assembly, disassembly and maintenance operations. The medical assembler assembles the medical equipment based on the doctors requirement, they also maintains quality and sanitation of the equipment. The major research challenges in MAR are as follows: establish automatic registration parts, find and track the orientation of parts, and lack of depth and visual features. This work proposes a rapid dual feature tracking method i.e., combination of Visual Simultaneous Localization and Mapping (SLAM) and Matched Pairs Selection (MAPSEL). The main idea of this work is to attain high tracking accuracy using the combined method. To get a good depth image map, a Graph-Based Joint Bilateral with Sharpening Filter (GRB-JBF with SF) is proposed since depth images are noisy due to the dynamic change of environmental factors that affects tracking accuracy. Then, the best feature points are obtained for matching using Oriented Fast and Rotated Brief (ORB) as a feature detector, Fast Retina Key point with Histogram of Gradients (FREAK-HoG) as a feature descriptor, and Feature Matching using Rajsk’s distance. Finally, the virtual object is rendered based on 3D affine and projection transformation. This work computes the performance in terms of tracking accuracy, tracking time, and rotation error for different distances using MATLAB R2017b. From the observed results, it is perceived that the proposed method attained the least position error value about 0.1 cm to 0.3 cm. Also, rotation error is observed as minimal between 2.40 (Deg) to 3.10 and its average scale is observed as 2.7140. Further, the proposed combination consumes less time against frames compared with other combinations and obtained a higher tracking accuracy of about 95.14% for 180 tracked points. The witnessed outcomes from the proposed scheme display superior performance compared with existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Imaging and Health Informatics
Journal of Medical Imaging and Health Informatics MATHEMATICAL & COMPUTATIONAL BIOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Journal of Medical Imaging and Health Informatics (JMIHI) is a medium to disseminate novel experimental and theoretical research results in the field of biomedicine, biology, clinical, rehabilitation engineering, medical image processing, bio-computing, D2H2, and other health related areas. As an example, the Distributed Diagnosis and Home Healthcare (D2H2) aims to improve the quality of patient care and patient wellness by transforming the delivery of healthcare from a central, hospital-based system to one that is more distributed and home-based. Different medical imaging modalities used for extraction of information from MRI, CT, ultrasound, X-ray, thermal, molecular and fusion of its techniques is the focus of this journal.
期刊最新文献
Medical Imaging and Health Informatics Liver Cancer Detection and Classification Using Raspberry Pi A Rapid Dual Feature Tracking Method for Medical Equipments Assembly and Disassembly in Markerless Augmented Reality Deep Learning-Based Electrocardiogram Signal Analysis for Abnormalities Detection Using Hybrid Cascade Feed Forward Backpropagation with Ant Colony Optimization Technique Volume Subtraction Method Using Dual Reconstruction and Additive Technique for Pulmonary Artery/Vein 3DCT Angiography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1