{"title":"连续时间马尔可夫过程,正交多项式和兰开斯特概率","authors":"R. H. Mena, Freddy Palma","doi":"10.1051/ps/2020004","DOIUrl":null,"url":null,"abstract":"This work links the conditional probability structure of Lancaster probabilities to a construction of reversible continuous-time Markov processes. Such a task is achieved by using the spectral expansion of the corresponding transition probabilities in order to introduce a continuous time dependence in the orthogonal representation inherent to Lancaster probabilities. This relationship provides a novel methodology to build continuous-time Markov processes via Lancaster probabilities. Particular cases of well-known models are seen to fall within this approach. As a byproduct, it also unveils new identities associated to well known orthogonal polynomials.","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":"43 1","pages":"100-112"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Continuous-time Markov processes, orthogonal polynomials and Lancaster probabilities\",\"authors\":\"R. H. Mena, Freddy Palma\",\"doi\":\"10.1051/ps/2020004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work links the conditional probability structure of Lancaster probabilities to a construction of reversible continuous-time Markov processes. Such a task is achieved by using the spectral expansion of the corresponding transition probabilities in order to introduce a continuous time dependence in the orthogonal representation inherent to Lancaster probabilities. This relationship provides a novel methodology to build continuous-time Markov processes via Lancaster probabilities. Particular cases of well-known models are seen to fall within this approach. As a byproduct, it also unveils new identities associated to well known orthogonal polynomials.\",\"PeriodicalId\":51249,\"journal\":{\"name\":\"Esaim-Probability and Statistics\",\"volume\":\"43 1\",\"pages\":\"100-112\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Probability and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/ps/2020004\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/ps/2020004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Continuous-time Markov processes, orthogonal polynomials and Lancaster probabilities
This work links the conditional probability structure of Lancaster probabilities to a construction of reversible continuous-time Markov processes. Such a task is achieved by using the spectral expansion of the corresponding transition probabilities in order to introduce a continuous time dependence in the orthogonal representation inherent to Lancaster probabilities. This relationship provides a novel methodology to build continuous-time Markov processes via Lancaster probabilities. Particular cases of well-known models are seen to fall within this approach. As a byproduct, it also unveils new identities associated to well known orthogonal polynomials.
期刊介绍:
The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains.
Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics.
Long papers are very welcome.
Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.