{"title":"绝缘流体的充气","authors":"I. Fofana","doi":"10.1109/ICEMPE51623.2021.9509205","DOIUrl":null,"url":null,"abstract":"Since the end of the 1950s, the extraction of dissolved gases from an oil sample and the determination of the nature and concentration of these gases have been serving as a means of faults detection. The type and extent of a defect can often be diagnosed from the composition of the gases and the rate at which they are produced. This technique, known as Dissolved Gas Analysis (DGA) for detecting certain categories of faults in oil-filled devices that cannot be readily detected by other conventional methods, remains one of the most widely used today. Although there is general consensus that increasing the concentration of dissolved gas is a precursor of local deterioration of insulation, opinions differ when it comes to interpretation of the symptoms. Consequently, the first step towards improving the accuracy of DGA techniques should be understanding the mechanisms associated with chemical reactions contributing to the generation of fault gases in transformer oils. This article intends to show how the chemical composition of the insulation system may affect the analyses. Some data was also included for further understanding","PeriodicalId":7083,"journal":{"name":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","volume":"11 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Gassing of Insulating Fluids\",\"authors\":\"I. Fofana\",\"doi\":\"10.1109/ICEMPE51623.2021.9509205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the end of the 1950s, the extraction of dissolved gases from an oil sample and the determination of the nature and concentration of these gases have been serving as a means of faults detection. The type and extent of a defect can often be diagnosed from the composition of the gases and the rate at which they are produced. This technique, known as Dissolved Gas Analysis (DGA) for detecting certain categories of faults in oil-filled devices that cannot be readily detected by other conventional methods, remains one of the most widely used today. Although there is general consensus that increasing the concentration of dissolved gas is a precursor of local deterioration of insulation, opinions differ when it comes to interpretation of the symptoms. Consequently, the first step towards improving the accuracy of DGA techniques should be understanding the mechanisms associated with chemical reactions contributing to the generation of fault gases in transformer oils. This article intends to show how the chemical composition of the insulation system may affect the analyses. Some data was also included for further understanding\",\"PeriodicalId\":7083,\"journal\":{\"name\":\"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)\",\"volume\":\"11 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEMPE51623.2021.9509205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMPE51623.2021.9509205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自20世纪50年代末以来,从油样中提取溶解气体并测定这些气体的性质和浓度一直是检测故障的一种手段。缺陷的类型和程度通常可以从气体的组成和它们产生的速度来诊断。这种被称为溶解气体分析(DGA)的技术用于检测充油设备中某些类别的故障,这些故障是其他常规方法无法检测到的,它仍然是当今应用最广泛的技术之一。虽然普遍认为溶解气体浓度的增加是局部绝缘恶化的前兆,但在解释症状时意见不一。因此,提高DGA技术准确性的第一步应该是了解与导致变压器油中故障气体产生的化学反应相关的机制。本文旨在说明绝缘系统的化学成分如何影响分析。为了进一步了解,还包括了一些数据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Gassing of Insulating Fluids
Since the end of the 1950s, the extraction of dissolved gases from an oil sample and the determination of the nature and concentration of these gases have been serving as a means of faults detection. The type and extent of a defect can often be diagnosed from the composition of the gases and the rate at which they are produced. This technique, known as Dissolved Gas Analysis (DGA) for detecting certain categories of faults in oil-filled devices that cannot be readily detected by other conventional methods, remains one of the most widely used today. Although there is general consensus that increasing the concentration of dissolved gas is a precursor of local deterioration of insulation, opinions differ when it comes to interpretation of the symptoms. Consequently, the first step towards improving the accuracy of DGA techniques should be understanding the mechanisms associated with chemical reactions contributing to the generation of fault gases in transformer oils. This article intends to show how the chemical composition of the insulation system may affect the analyses. Some data was also included for further understanding
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal Stress Analysis of Epoxy Resin Encapsulated Solid State Transformer's Cracking Caused by Temperature Shock Study on the Arc Characteristics of Insulator Creeping Discharge under High Velocity Air Application of an improved ultraviolet spectrophotometry technology for the determination of antioxidants in natural ester liquids Noise analysis and device improvement of composite probe for space charge measuring based on PIPWP method Research on high voltage capacitor partial discharge detection with portable oscillating wave circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1