氟脱氧葡萄糖磁性纳米粒子对 NCI-H727 和 SH-SY5Y 癌细胞的影响。

Perihan Unak, Rumbidzai Cheryl Budiyo, Alex Horsnzky, Volkan Yasakci, Gillian Pearce, Steve Russell, Omer Aras, Oguz Akin, Julian Wong
{"title":"氟脱氧葡萄糖磁性纳米粒子对 NCI-H727 和 SH-SY5Y 癌细胞的影响。","authors":"Perihan Unak, Rumbidzai Cheryl Budiyo, Alex Horsnzky, Volkan Yasakci, Gillian Pearce, Steve Russell, Omer Aras, Oguz Akin, Julian Wong","doi":"10.26655/AJNANOMAT.2021.1.5","DOIUrl":null,"url":null,"abstract":"<p><p>We present a report regarding the cytotoxic effects of iron-based magnetic nanoparticles conjugated with fluorodeoxyglucose (FDG-mNPs) on the viability of NCI-H727 and SH-SY5Y cancer cells. MTT assays were performed to determine cell viability in treated cancer cells grown under standard 2D culture conditions. FDG-mNP concentrations of 0.075 mg/mL, 0.15 mg/mL, and 0.3 mg/mL decreased mean cell viability of NCI-H727 cells to 92.5%, 82.9%, and 75% respectively. FDG-mNPs was also shown to have a detrimental effect on the viability of SY5Y cells: a decrease of 5.7%, 18.6%, and 36.4% was found for SY5Y cells treated with 0.075 mg/mL, 0.15 mg/mL, and 0.3 mg/mL concentrations of FDG-mNPs, respectively. When NCI-H727 and SH-SY5Y cancer cells were grown as 3D spheroids, morphology was visibly changed and the number of viable cells was decerased in spheroids treated with FDG-mNPs compared with untreated spheroids. The results of our study demonstrated that FDG-mNP has toxic effects on NCI-H7272 and SY5Y cancer cells, and we conclude that conjugated FDG-mNPs are promising in the development of clinical applications for the destruction of cancer cells.</p>","PeriodicalId":8523,"journal":{"name":"Asian Journal of Nanoscience and Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10792519/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of fluorodeoxyglucose magnetic nanoparticles on NCI-H727 and SH-SY5Y cancer cells.\",\"authors\":\"Perihan Unak, Rumbidzai Cheryl Budiyo, Alex Horsnzky, Volkan Yasakci, Gillian Pearce, Steve Russell, Omer Aras, Oguz Akin, Julian Wong\",\"doi\":\"10.26655/AJNANOMAT.2021.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a report regarding the cytotoxic effects of iron-based magnetic nanoparticles conjugated with fluorodeoxyglucose (FDG-mNPs) on the viability of NCI-H727 and SH-SY5Y cancer cells. MTT assays were performed to determine cell viability in treated cancer cells grown under standard 2D culture conditions. FDG-mNP concentrations of 0.075 mg/mL, 0.15 mg/mL, and 0.3 mg/mL decreased mean cell viability of NCI-H727 cells to 92.5%, 82.9%, and 75% respectively. FDG-mNPs was also shown to have a detrimental effect on the viability of SY5Y cells: a decrease of 5.7%, 18.6%, and 36.4% was found for SY5Y cells treated with 0.075 mg/mL, 0.15 mg/mL, and 0.3 mg/mL concentrations of FDG-mNPs, respectively. When NCI-H727 and SH-SY5Y cancer cells were grown as 3D spheroids, morphology was visibly changed and the number of viable cells was decerased in spheroids treated with FDG-mNPs compared with untreated spheroids. The results of our study demonstrated that FDG-mNP has toxic effects on NCI-H7272 and SY5Y cancer cells, and we conclude that conjugated FDG-mNPs are promising in the development of clinical applications for the destruction of cancer cells.</p>\",\"PeriodicalId\":8523,\"journal\":{\"name\":\"Asian Journal of Nanoscience and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10792519/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Nanoscience and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26655/AJNANOMAT.2021.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/12/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Nanoscience and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26655/AJNANOMAT.2021.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了缀有氟脱氧葡萄糖的铁基磁性纳米粒子(FDG-mNPs)对 NCI-H727 和 SH-SY5Y 癌细胞活力的细胞毒性作用。在标准二维培养条件下,对经处理的癌细胞进行 MTT 检测,以确定细胞活力。FDG-mNP 浓度分别为 0.075 毫克/毫升、0.15 毫克/毫升和 0.3 毫克/毫升时,NCI-H727 细胞的平均存活率分别下降至 92.5%、82.9% 和 75%。研究还表明,FDG-mNPs 对 SY5Y 细胞的活力也有不利影响:用 0.075 毫克/毫升、0.15 毫克/毫升和 0.3 毫克/毫升浓度的 FDG-mNPs 处理 SY5Y 细胞,其活力分别下降了 5.7%、18.6% 和 36.4%。当 NCI-H727 和 SH-SY5Y 癌细胞生长为三维球形时,与未处理的球形细胞相比,经 FDG-mNPs 处理的球形细胞形态发生了明显变化,存活细胞数量减少。我们的研究结果表明,FDG-mNP 对 NCI-H7272 和 SY5Y 癌细胞具有毒性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of fluorodeoxyglucose magnetic nanoparticles on NCI-H727 and SH-SY5Y cancer cells.

We present a report regarding the cytotoxic effects of iron-based magnetic nanoparticles conjugated with fluorodeoxyglucose (FDG-mNPs) on the viability of NCI-H727 and SH-SY5Y cancer cells. MTT assays were performed to determine cell viability in treated cancer cells grown under standard 2D culture conditions. FDG-mNP concentrations of 0.075 mg/mL, 0.15 mg/mL, and 0.3 mg/mL decreased mean cell viability of NCI-H727 cells to 92.5%, 82.9%, and 75% respectively. FDG-mNPs was also shown to have a detrimental effect on the viability of SY5Y cells: a decrease of 5.7%, 18.6%, and 36.4% was found for SY5Y cells treated with 0.075 mg/mL, 0.15 mg/mL, and 0.3 mg/mL concentrations of FDG-mNPs, respectively. When NCI-H727 and SH-SY5Y cancer cells were grown as 3D spheroids, morphology was visibly changed and the number of viable cells was decerased in spheroids treated with FDG-mNPs compared with untreated spheroids. The results of our study demonstrated that FDG-mNP has toxic effects on NCI-H7272 and SY5Y cancer cells, and we conclude that conjugated FDG-mNPs are promising in the development of clinical applications for the destruction of cancer cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis of bis(4-hydroxycoumarin)methanes using nano-CuO/CeO2 as recyclable catalyst Toxicity testing of indocyanine green and fluorodeoxyglucose conjugated iron oxide nanoparticles with and without exposure to a magnetic field. The reaction of curcumin-hydrazine and its effect on bone marrow mesenchymal stem cells Hydrothermal synthesis of ZnO nanoparticles and comparison of its adsorption characteristics with the natural adsorbent (mango peel) Synthesis WO3 nanoparticle via the electrochemical method and study its super-hydrophobicity properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1