Jason T. Smith, Nathan Un, Ruoyang Yao, Nattawut Sinsuebphon, Alena Rudkouskaya, J. Mazurkiewicz, Margarida M Barroso, Pingkun Yan, X. Intes
{"title":"通过深度学习改进荧光寿命成像","authors":"Jason T. Smith, Nathan Un, Ruoyang Yao, Nattawut Sinsuebphon, Alena Rudkouskaya, J. Mazurkiewicz, Margarida M Barroso, Pingkun Yan, X. Intes","doi":"10.1364/ntm.2019.nm3c.4","DOIUrl":null,"url":null,"abstract":"Herein, we present a novel workflow based on Deep Learning (DL) trained on synthetic data to quantify fluorescence lifetime imaging of experimental data across multiple microscopic and macroscopic applications with unprecedented accuracy and computational speed.","PeriodicalId":8973,"journal":{"name":"Biophotonics Congress: Optics in the Life Sciences Congress 2019 (BODA,BRAIN,NTM,OMA,OMP)","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fluorescent Lifetime Imaging improved via Deep Learning\",\"authors\":\"Jason T. Smith, Nathan Un, Ruoyang Yao, Nattawut Sinsuebphon, Alena Rudkouskaya, J. Mazurkiewicz, Margarida M Barroso, Pingkun Yan, X. Intes\",\"doi\":\"10.1364/ntm.2019.nm3c.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, we present a novel workflow based on Deep Learning (DL) trained on synthetic data to quantify fluorescence lifetime imaging of experimental data across multiple microscopic and macroscopic applications with unprecedented accuracy and computational speed.\",\"PeriodicalId\":8973,\"journal\":{\"name\":\"Biophotonics Congress: Optics in the Life Sciences Congress 2019 (BODA,BRAIN,NTM,OMA,OMP)\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophotonics Congress: Optics in the Life Sciences Congress 2019 (BODA,BRAIN,NTM,OMA,OMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/ntm.2019.nm3c.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophotonics Congress: Optics in the Life Sciences Congress 2019 (BODA,BRAIN,NTM,OMA,OMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/ntm.2019.nm3c.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fluorescent Lifetime Imaging improved via Deep Learning
Herein, we present a novel workflow based on Deep Learning (DL) trained on synthetic data to quantify fluorescence lifetime imaging of experimental data across multiple microscopic and macroscopic applications with unprecedented accuracy and computational speed.