J. Quek, L. Chunlin, J. V. Musngi, P. B. Malalasekara
{"title":"纤维增强聚合物包裹钢筋混凝土柱在爆炸荷载作用下的有限元模拟与试验结果比较","authors":"J. Quek, L. Chunlin, J. V. Musngi, P. B. Malalasekara","doi":"10.2495/cmem-v8-n3-233-242","DOIUrl":null,"url":null,"abstract":"Fibre-reinforced polymer (FRP) as a protective hardening system has now become more commonly used in enhancing the capacity of reinforced concrete (RC) elements against blast loadings. Wrapping RC columns with FRP, depending on the wrapping configuration, will result in additional axial, moment and shear capacity. The FRP also prevents debris from being blown off and serves as a catcher system which minimises the possible cause of injuries/casualties in the event of blast. While analytical models built into popular finite element modelling (FEM) software are widely used to simulate and analyse the effects of a blast load to a structural element, little work has been carried out to validate the results of such analysis through experimental means. This paper examines the effect of blast loadings onto RC columns wrapped with FRP. The behaviour of the FRP-wrapped RC columns subjected to blast loading is simulated using finite element analysis. Results from the finite element simulation are compared to the corresponding wrapping configuration from actual experimental results. The comparison validates the reliability of using finite element analysis in predicting the response of FRP-wrapped RC columns subjected to blast loading.","PeriodicalId":22520,"journal":{"name":"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS","volume":"10 1","pages":"233-242"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A comparison of finite element simulation and experimental results from reinforced concrete columns wrapped with fibre-reinforced polymer subjected to blast loading\",\"authors\":\"J. Quek, L. Chunlin, J. V. Musngi, P. B. Malalasekara\",\"doi\":\"10.2495/cmem-v8-n3-233-242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fibre-reinforced polymer (FRP) as a protective hardening system has now become more commonly used in enhancing the capacity of reinforced concrete (RC) elements against blast loadings. Wrapping RC columns with FRP, depending on the wrapping configuration, will result in additional axial, moment and shear capacity. The FRP also prevents debris from being blown off and serves as a catcher system which minimises the possible cause of injuries/casualties in the event of blast. While analytical models built into popular finite element modelling (FEM) software are widely used to simulate and analyse the effects of a blast load to a structural element, little work has been carried out to validate the results of such analysis through experimental means. This paper examines the effect of blast loadings onto RC columns wrapped with FRP. The behaviour of the FRP-wrapped RC columns subjected to blast loading is simulated using finite element analysis. Results from the finite element simulation are compared to the corresponding wrapping configuration from actual experimental results. The comparison validates the reliability of using finite element analysis in predicting the response of FRP-wrapped RC columns subjected to blast loading.\",\"PeriodicalId\":22520,\"journal\":{\"name\":\"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS\",\"volume\":\"10 1\",\"pages\":\"233-242\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/cmem-v8-n3-233-242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/cmem-v8-n3-233-242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparison of finite element simulation and experimental results from reinforced concrete columns wrapped with fibre-reinforced polymer subjected to blast loading
Fibre-reinforced polymer (FRP) as a protective hardening system has now become more commonly used in enhancing the capacity of reinforced concrete (RC) elements against blast loadings. Wrapping RC columns with FRP, depending on the wrapping configuration, will result in additional axial, moment and shear capacity. The FRP also prevents debris from being blown off and serves as a catcher system which minimises the possible cause of injuries/casualties in the event of blast. While analytical models built into popular finite element modelling (FEM) software are widely used to simulate and analyse the effects of a blast load to a structural element, little work has been carried out to validate the results of such analysis through experimental means. This paper examines the effect of blast loadings onto RC columns wrapped with FRP. The behaviour of the FRP-wrapped RC columns subjected to blast loading is simulated using finite element analysis. Results from the finite element simulation are compared to the corresponding wrapping configuration from actual experimental results. The comparison validates the reliability of using finite element analysis in predicting the response of FRP-wrapped RC columns subjected to blast loading.