nfv网络中的吞吐量最大化和资源优化

Zichuan Xu, W. Liang, A. Galis, Yu Ma
{"title":"nfv网络中的吞吐量最大化和资源优化","authors":"Zichuan Xu, W. Liang, A. Galis, Yu Ma","doi":"10.1109/ICC.2017.7996514","DOIUrl":null,"url":null,"abstract":"Network function virtualization (NFV) has been emerging as a new paradigm to enable elastic and inexpensive network services in modern computer networks, through deploying flexible virtualized network functions (VNFs) running in virtual computing platforms. Different VNFs can be chained together to form different service chains, to meet various user data routing demands for different network services. In this paper we consider provisioning network services in an NFV-enabled network that consists of data centers for implementing VNF instances of service chains and switches. We study the throughput maximization problem with the aim to admit as many user requests as possible while minimizing the implementation cost of the requests, assuming that limited numbers of instances of each service chain have been stored in data centers. We first propose an optimal algorithm for the problem if all requests have identical packet rates; otherwise, we devise two approximation algorithms with probable approximation ratios, depending on whether the packet traffic of each request is splittable. We finally conduct experiments to evaluate the performance of the proposed algorithms by simulations. Experimental results show that the proposed algorithms achieve at least 15% more throughput than that of a greedy algorithm.","PeriodicalId":6517,"journal":{"name":"2017 IEEE International Conference on Communications (ICC)","volume":"24 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Throughput maximization and resource optimization in NFV-enabled networks\",\"authors\":\"Zichuan Xu, W. Liang, A. Galis, Yu Ma\",\"doi\":\"10.1109/ICC.2017.7996514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network function virtualization (NFV) has been emerging as a new paradigm to enable elastic and inexpensive network services in modern computer networks, through deploying flexible virtualized network functions (VNFs) running in virtual computing platforms. Different VNFs can be chained together to form different service chains, to meet various user data routing demands for different network services. In this paper we consider provisioning network services in an NFV-enabled network that consists of data centers for implementing VNF instances of service chains and switches. We study the throughput maximization problem with the aim to admit as many user requests as possible while minimizing the implementation cost of the requests, assuming that limited numbers of instances of each service chain have been stored in data centers. We first propose an optimal algorithm for the problem if all requests have identical packet rates; otherwise, we devise two approximation algorithms with probable approximation ratios, depending on whether the packet traffic of each request is splittable. We finally conduct experiments to evaluate the performance of the proposed algorithms by simulations. Experimental results show that the proposed algorithms achieve at least 15% more throughput than that of a greedy algorithm.\",\"PeriodicalId\":6517,\"journal\":{\"name\":\"2017 IEEE International Conference on Communications (ICC)\",\"volume\":\"24 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Communications (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC.2017.7996514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2017.7996514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

网络功能虚拟化(NFV)通过在虚拟计算平台上部署灵活的虚拟网络功能(VNFs),成为在现代计算机网络中实现弹性和廉价网络服务的新范例。可以将不同的VNFs链接在一起,形成不同的服务链,以满足不同网络业务的各种用户数据路由需求。在本文中,我们考虑在支持nfv的网络中提供网络服务,该网络由数据中心组成,用于实现服务链和交换机的VNF实例。假设每个服务链在数据中心中存储的实例数量有限,我们研究吞吐量最大化问题的目的是在允许尽可能多的用户请求的同时最小化请求的实现成本。我们首先提出了一个最优算法,如果所有请求具有相同的数据包速率;另外,根据每个请求的数据包流量是否可分割,我们设计了两种具有可能近似比率的近似算法。最后,我们进行了实验,通过模拟来评估所提出算法的性能。实验结果表明,该算法的吞吐量比贪婪算法至少提高15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Throughput maximization and resource optimization in NFV-enabled networks
Network function virtualization (NFV) has been emerging as a new paradigm to enable elastic and inexpensive network services in modern computer networks, through deploying flexible virtualized network functions (VNFs) running in virtual computing platforms. Different VNFs can be chained together to form different service chains, to meet various user data routing demands for different network services. In this paper we consider provisioning network services in an NFV-enabled network that consists of data centers for implementing VNF instances of service chains and switches. We study the throughput maximization problem with the aim to admit as many user requests as possible while minimizing the implementation cost of the requests, assuming that limited numbers of instances of each service chain have been stored in data centers. We first propose an optimal algorithm for the problem if all requests have identical packet rates; otherwise, we devise two approximation algorithms with probable approximation ratios, depending on whether the packet traffic of each request is splittable. We finally conduct experiments to evaluate the performance of the proposed algorithms by simulations. Experimental results show that the proposed algorithms achieve at least 15% more throughput than that of a greedy algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic control of NFV forwarding graphs with end-to-end deadline constraints New sensing technique for detecting application layer DDoS attacks targeting back-end database resources Using the pattern-of-life in networks to improve the effectiveness of intrusion detection systems On the two time scale characteristics of wireless high speed railway networks Secrecy outage analysis of buffer-aided multi-antenna relay systems without eavesdropper's CSI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1