T. Cheng, Chen Chen, Chen-Xi Ye, Weifang Xie, Xiao Zhang, Tian Yuan
{"title":"KBiO3/纳米ag3po4复合光催化剂的合成及其在可见光下降解有机污染物中的应用","authors":"T. Cheng, Chen Chen, Chen-Xi Ye, Weifang Xie, Xiao Zhang, Tian Yuan","doi":"10.30492/IJCCE.2021.521915.4491","DOIUrl":null,"url":null,"abstract":"In this work, a novel composite photocatalyst, KBiO3/nano-Ag3PO4 (K/Ag catalyst), was synthesized, and efficiently degraded methylene blue (MB) under visible light. The various properties of photocatalyst were measured by modern analytical techniques, such as XRD, FT-IR, SEM, XPS, and UV-Vis. We also utilized Density functional theory calculation (DFT) to investigate the photocatalytic degradation mechanism in this reaction process. The multiple characterization findings demonstrated that K/Ag composite catalyst was successfully synthesized using Ag3PO4 and KBiO3, and it displayed excellent absorption for visible light. The photocatalytic results confirmed that K/Ag catalyst greatly promoted the degradation of MB under visible light. The first-order reaction kinetics model could satisfactorily describe the apparent photocatalytic degradation process in this system. In addition, adding electron capture agents to the photocatalytic system highly decreased the degradation efficiencies of target pollutant. Moreover, K/Ag composite catalyst exhibited perfect photocatalyst stability after recycling three times. Through calculating the band structure, Density of States (DOS) and work function, KBiO3 and Ag3PO4 could be considered as n type and p type semiconductor material, respectively. When the composite catalyst was exposed to light, the light-excited electrons would be appeared in both the conduction bands. Furthermore, the transfer trend of electrons and holes made photogenerated electrons concentrate on the conduction band of n type KBiO3, and photogenerated holes concentrate on the valence band of p type Ag3PO4, and thereby greatly improve the photocatalytic efficiency.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"39 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis of KBiO3/Nano-Ag3PO4 Composite Photocatalyst and its Application for Degradation of Organic Pollutant under visible light\",\"authors\":\"T. Cheng, Chen Chen, Chen-Xi Ye, Weifang Xie, Xiao Zhang, Tian Yuan\",\"doi\":\"10.30492/IJCCE.2021.521915.4491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a novel composite photocatalyst, KBiO3/nano-Ag3PO4 (K/Ag catalyst), was synthesized, and efficiently degraded methylene blue (MB) under visible light. The various properties of photocatalyst were measured by modern analytical techniques, such as XRD, FT-IR, SEM, XPS, and UV-Vis. We also utilized Density functional theory calculation (DFT) to investigate the photocatalytic degradation mechanism in this reaction process. The multiple characterization findings demonstrated that K/Ag composite catalyst was successfully synthesized using Ag3PO4 and KBiO3, and it displayed excellent absorption for visible light. The photocatalytic results confirmed that K/Ag catalyst greatly promoted the degradation of MB under visible light. The first-order reaction kinetics model could satisfactorily describe the apparent photocatalytic degradation process in this system. In addition, adding electron capture agents to the photocatalytic system highly decreased the degradation efficiencies of target pollutant. Moreover, K/Ag composite catalyst exhibited perfect photocatalyst stability after recycling three times. Through calculating the band structure, Density of States (DOS) and work function, KBiO3 and Ag3PO4 could be considered as n type and p type semiconductor material, respectively. When the composite catalyst was exposed to light, the light-excited electrons would be appeared in both the conduction bands. Furthermore, the transfer trend of electrons and holes made photogenerated electrons concentrate on the conduction band of n type KBiO3, and photogenerated holes concentrate on the valence band of p type Ag3PO4, and thereby greatly improve the photocatalytic efficiency.\",\"PeriodicalId\":14572,\"journal\":{\"name\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30492/IJCCE.2021.521915.4491\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.521915.4491","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis of KBiO3/Nano-Ag3PO4 Composite Photocatalyst and its Application for Degradation of Organic Pollutant under visible light
In this work, a novel composite photocatalyst, KBiO3/nano-Ag3PO4 (K/Ag catalyst), was synthesized, and efficiently degraded methylene blue (MB) under visible light. The various properties of photocatalyst were measured by modern analytical techniques, such as XRD, FT-IR, SEM, XPS, and UV-Vis. We also utilized Density functional theory calculation (DFT) to investigate the photocatalytic degradation mechanism in this reaction process. The multiple characterization findings demonstrated that K/Ag composite catalyst was successfully synthesized using Ag3PO4 and KBiO3, and it displayed excellent absorption for visible light. The photocatalytic results confirmed that K/Ag catalyst greatly promoted the degradation of MB under visible light. The first-order reaction kinetics model could satisfactorily describe the apparent photocatalytic degradation process in this system. In addition, adding electron capture agents to the photocatalytic system highly decreased the degradation efficiencies of target pollutant. Moreover, K/Ag composite catalyst exhibited perfect photocatalyst stability after recycling three times. Through calculating the band structure, Density of States (DOS) and work function, KBiO3 and Ag3PO4 could be considered as n type and p type semiconductor material, respectively. When the composite catalyst was exposed to light, the light-excited electrons would be appeared in both the conduction bands. Furthermore, the transfer trend of electrons and holes made photogenerated electrons concentrate on the conduction band of n type KBiO3, and photogenerated holes concentrate on the valence band of p type Ag3PO4, and thereby greatly improve the photocatalytic efficiency.
期刊介绍:
The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.