{"title":"利用Banach不动点定理研究了时间分数阶Oldroyd-B流体方程初值问题的存在性","authors":"Vo Viet Tri","doi":"10.31197/atnaa.943242","DOIUrl":null,"url":null,"abstract":"In this paper, we study the initial boundary value problem for time-fractional Oldroyd-B fluid equation. Our model contains two Riemann-Liouville fractional derivatives which have many applications, for example, in viscoelastic flows. For the linear case, we obtain regularity results under some different assumptions of the initial data and the source function. For the non-linear case, we obtain the existence of a unique solution using Banach’s fixed point theorem.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence of an initial value problem for time-fractional Oldroyd-B fluid equation using Banach fixed point theorem\",\"authors\":\"Vo Viet Tri\",\"doi\":\"10.31197/atnaa.943242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the initial boundary value problem for time-fractional Oldroyd-B fluid equation. Our model contains two Riemann-Liouville fractional derivatives which have many applications, for example, in viscoelastic flows. For the linear case, we obtain regularity results under some different assumptions of the initial data and the source function. For the non-linear case, we obtain the existence of a unique solution using Banach’s fixed point theorem.\",\"PeriodicalId\":7440,\"journal\":{\"name\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31197/atnaa.943242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.943242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Existence of an initial value problem for time-fractional Oldroyd-B fluid equation using Banach fixed point theorem
In this paper, we study the initial boundary value problem for time-fractional Oldroyd-B fluid equation. Our model contains two Riemann-Liouville fractional derivatives which have many applications, for example, in viscoelastic flows. For the linear case, we obtain regularity results under some different assumptions of the initial data and the source function. For the non-linear case, we obtain the existence of a unique solution using Banach’s fixed point theorem.