{"title":"延迟感知绿色混合CRAN","authors":"Abdulrahman Alabbasi, C. Cavdar","doi":"10.23919/WIOPT.2017.7959942","DOIUrl":null,"url":null,"abstract":"As a potential candidate architecture for 5G systems, cloud radio access network (CRAN) enhances the system's capacity by centralizing the processing and coordination at the central cloud. However, this centralization imposes stringent bandwidth and delay requirements on the fronthaul segment of the network that connects the centralized baseband processing units (BBUs) to the radio units (RUs). Hence, hybrid CRAN is proposed to alleviate the fronthaul bandwidth requirement. The concept of hybrid CRAN supports the proposal of splitting/virtualizing the BBU functions processing between the central cloud (central office that has large processing capacity and efficiency) and the edge cloud (an aggregation node which is closer to the user, but usually has less efficiency in processing). In our previous work, we have studied the impact of different split points on the system's energy and fronthaul bandwidth consumption. In this study, we analyze the delay performance of the end user's request. We propose an end-to-end (from the central cloud to the end user) delay model (per user's request) for different function split points. In this model, different delay requirements enforce different function splits, hence affect the system's energy consumption. Therefore, we propose several research directions to incorporate the proposed delay model in the problem of minimizing energy and bandwidth consumption in the network. We found that the required function split decision, to achieve minimum delay, is significantly affected by the processing power efficiency ratio between processing units of edge cloud and central cloud. High processing efficiency ratio (≈1) leads to significant delay improvement when processing more base band functions at the edge cloud.","PeriodicalId":6630,"journal":{"name":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"1 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Delay-aware green hybrid CRAN\",\"authors\":\"Abdulrahman Alabbasi, C. Cavdar\",\"doi\":\"10.23919/WIOPT.2017.7959942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a potential candidate architecture for 5G systems, cloud radio access network (CRAN) enhances the system's capacity by centralizing the processing and coordination at the central cloud. However, this centralization imposes stringent bandwidth and delay requirements on the fronthaul segment of the network that connects the centralized baseband processing units (BBUs) to the radio units (RUs). Hence, hybrid CRAN is proposed to alleviate the fronthaul bandwidth requirement. The concept of hybrid CRAN supports the proposal of splitting/virtualizing the BBU functions processing between the central cloud (central office that has large processing capacity and efficiency) and the edge cloud (an aggregation node which is closer to the user, but usually has less efficiency in processing). In our previous work, we have studied the impact of different split points on the system's energy and fronthaul bandwidth consumption. In this study, we analyze the delay performance of the end user's request. We propose an end-to-end (from the central cloud to the end user) delay model (per user's request) for different function split points. In this model, different delay requirements enforce different function splits, hence affect the system's energy consumption. Therefore, we propose several research directions to incorporate the proposed delay model in the problem of minimizing energy and bandwidth consumption in the network. We found that the required function split decision, to achieve minimum delay, is significantly affected by the processing power efficiency ratio between processing units of edge cloud and central cloud. High processing efficiency ratio (≈1) leads to significant delay improvement when processing more base band functions at the edge cloud.\",\"PeriodicalId\":6630,\"journal\":{\"name\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"volume\":\"1 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WIOPT.2017.7959942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2017.7959942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

作为5G系统的潜在候选架构,云无线接入网(CRAN)通过将处理和协调集中在中心云来增强系统的容量。然而,这种集中化对连接集中式基带处理单元(BBUs)和无线电单元(ru)的网络前传段施加了严格的带宽和延迟要求。因此,提出了混合CRAN来缓解前传带宽需求。混合CRAN的概念支持在中心云(处理能力和效率较高的中心局)和边缘云(距离用户较近但处理效率较低的聚合节点)之间对BBU功能处理进行拆分/虚拟化的建议。在我们之前的工作中,我们研究了不同的分裂点对系统能量和前传带宽消耗的影响。在本研究中,我们分析了终端用户请求的延迟性能。我们提出了一个端到端(从中心云到最终用户)延迟模型(每个用户的请求),用于不同的功能分裂点。在该模型中,不同的延迟需求导致不同的功能分割,从而影响系统的能耗。因此,我们提出了几个研究方向,将所提出的延迟模型纳入网络中能量和带宽消耗最小的问题。我们发现,为了实现最小延迟,所需的函数分割决策受到边缘云和中心云处理单元之间的处理能力效率比的显著影响。较高的处理效率比(≈1)使得在边缘云处处理更多基带函数时延迟显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Delay-aware green hybrid CRAN
As a potential candidate architecture for 5G systems, cloud radio access network (CRAN) enhances the system's capacity by centralizing the processing and coordination at the central cloud. However, this centralization imposes stringent bandwidth and delay requirements on the fronthaul segment of the network that connects the centralized baseband processing units (BBUs) to the radio units (RUs). Hence, hybrid CRAN is proposed to alleviate the fronthaul bandwidth requirement. The concept of hybrid CRAN supports the proposal of splitting/virtualizing the BBU functions processing between the central cloud (central office that has large processing capacity and efficiency) and the edge cloud (an aggregation node which is closer to the user, but usually has less efficiency in processing). In our previous work, we have studied the impact of different split points on the system's energy and fronthaul bandwidth consumption. In this study, we analyze the delay performance of the end user's request. We propose an end-to-end (from the central cloud to the end user) delay model (per user's request) for different function split points. In this model, different delay requirements enforce different function splits, hence affect the system's energy consumption. Therefore, we propose several research directions to incorporate the proposed delay model in the problem of minimizing energy and bandwidth consumption in the network. We found that the required function split decision, to achieve minimum delay, is significantly affected by the processing power efficiency ratio between processing units of edge cloud and central cloud. High processing efficiency ratio (≈1) leads to significant delay improvement when processing more base band functions at the edge cloud.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote speaker Keynote speaker Ad-Hoc, Mobile, and Wireless Networks: 19th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2020, Bari, Italy, October 19–21, 2020, Proceedings Retraction Note to: Mobility Aided Context-Aware Forwarding Approach for Destination-Less OppNets Ad-Hoc, Mobile, and Wireless Networks: 18th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2019, Luxembourg, Luxembourg, October 1–3, 2019, Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1