钙钛矿型氧化物上碳氧化物的加氢反应

IF 9.3 2区 化学 Q1 CHEMISTRY, PHYSICAL Catalysis Reviews-Science and Engineering Pub Date : 1992-12-01 DOI:10.1080/01614949208016315
J. Fierro
{"title":"钙钛矿型氧化物上碳氧化物的加氢反应","authors":"J. Fierro","doi":"10.1080/01614949208016315","DOIUrl":null,"url":null,"abstract":"Abstract Transition metals, metal oxides and metal-containing mixed oxides have been extensively used for Fischer-Tropsch hydrocarbon synthesis (1–9) and their ability to yield oxygenated compounds. During the last two decades, an extensive search has been carried out in examining the mechanism of catalytic hydrogenation of co and CO, which produced hydrocarbons and oxygenate compounds. The catalytic models for hydrocarbon synthesis have already been reviewed by Vannice (lo), which gives detailed information and discusses the data which were obtained during their development. As a broad product distribution is obtained during the FT synthesis, the mechanisms are extremely complicated and not clearly understood: therefore this topic is beyond the objective of this chapter and hence no further attention will be paid.","PeriodicalId":50986,"journal":{"name":"Catalysis Reviews-Science and Engineering","volume":"17 1","pages":"321-336"},"PeriodicalIF":9.3000,"publicationDate":"1992-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Hydrogenation of Carbon Oxides over Perovskite-Type Oxides\",\"authors\":\"J. Fierro\",\"doi\":\"10.1080/01614949208016315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Transition metals, metal oxides and metal-containing mixed oxides have been extensively used for Fischer-Tropsch hydrocarbon synthesis (1–9) and their ability to yield oxygenated compounds. During the last two decades, an extensive search has been carried out in examining the mechanism of catalytic hydrogenation of co and CO, which produced hydrocarbons and oxygenate compounds. The catalytic models for hydrocarbon synthesis have already been reviewed by Vannice (lo), which gives detailed information and discusses the data which were obtained during their development. As a broad product distribution is obtained during the FT synthesis, the mechanisms are extremely complicated and not clearly understood: therefore this topic is beyond the objective of this chapter and hence no further attention will be paid.\",\"PeriodicalId\":50986,\"journal\":{\"name\":\"Catalysis Reviews-Science and Engineering\",\"volume\":\"17 1\",\"pages\":\"321-336\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"1992-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Reviews-Science and Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/01614949208016315\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Reviews-Science and Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/01614949208016315","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 16

摘要

过渡金属、金属氧化物和含金属的混合氧化物已广泛用于费托合成碳氢化合物(1-9)及其生成含氧化合物的能力。在过去的二十年中,人们对co和co催化加氢产生碳氢化合物和含氧化合物的机理进行了广泛的研究。Vannice (lo)对烃类合成的催化模型进行了综述,给出了详细的资料,并对其发展过程中获得的数据进行了讨论。由于FT合成过程中得到的产物分布很广,其机理极其复杂,不清楚,因此该主题超出了本章的目的,不再作进一步的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrogenation of Carbon Oxides over Perovskite-Type Oxides
Abstract Transition metals, metal oxides and metal-containing mixed oxides have been extensively used for Fischer-Tropsch hydrocarbon synthesis (1–9) and their ability to yield oxygenated compounds. During the last two decades, an extensive search has been carried out in examining the mechanism of catalytic hydrogenation of co and CO, which produced hydrocarbons and oxygenate compounds. The catalytic models for hydrocarbon synthesis have already been reviewed by Vannice (lo), which gives detailed information and discusses the data which were obtained during their development. As a broad product distribution is obtained during the FT synthesis, the mechanisms are extremely complicated and not clearly understood: therefore this topic is beyond the objective of this chapter and hence no further attention will be paid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.30
自引率
2.80%
发文量
29
期刊介绍: Catalysis Reviews is dedicated to fostering interdisciplinary perspectives in catalytic science and engineering, catering to a global audience of industrial and academic researchers. This journal serves as a bridge between the realms of heterogeneous, homogeneous, and bio-catalysis, providing a crucial and critical evaluation of the current state of catalytic science and engineering. Published topics encompass advances in technology and theory, engineering and chemical aspects of catalytic reactions, reactor design, computer models, analytical tools, and statistical evaluations.
期刊最新文献
L-Proline: Unraveling its Reactivity and Mechanistic Insights as an Organocatalyst in Multi-Component Synthesis: A Comprehensive Review Zeolite Catalysts for Biomass Valorization: Tuning of active sites for promoting reactivity Best practices in catalyst screening Multi-metallic electrocatalysts as emerging class of materials: opportunities and challenges in the synthesis, characterization, and applications Challenges of heterogeneous catalytic wet air oxidation processes and potential applications on emerging contaminants loaded wastewater treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1