Melina-Lorén Kienle Garrido, Tim Breitenbach, K. Chudej, A. Borzì
{"title":"肿瘤治疗最优控制问题的建模与数值解","authors":"Melina-Lorén Kienle Garrido, Tim Breitenbach, K. Chudej, A. Borzì","doi":"10.4236/AM.2018.98067","DOIUrl":null,"url":null,"abstract":"A mathematical optimal-control tumor therapy framework consisting of radio- and anti-angiogenesis control strategies that are included in a tumor growth model is investigated. The governing system, resulting from the combination of two well established models, represents the differential constraint of a non-smooth optimal control problem that aims at reducing the volume of the tumor while keeping the radio- and anti-angiogenesis chemical dosage to a minimum. Existence of optimal solutions is proved and necessary conditions are formulated in terms of the Pontryagin maximum principle. Based on this principle, a so-called sequential quadratic Hamiltonian (SQH) method is discussed and benchmarked with an “interior point optimizer—a mathematical programming language” (IPOPT-AMPL) algorithm. Results of numerical experiments are presented that successfully validate the SQH solution scheme. Further, it is shown how to choose the optimisation weights in order to obtain treatment functions that successfully reduce the tumor volume to zero.","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Modeling and Numerical Solution of a Cancer Therapy Optimal Control Problem\",\"authors\":\"Melina-Lorén Kienle Garrido, Tim Breitenbach, K. Chudej, A. Borzì\",\"doi\":\"10.4236/AM.2018.98067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical optimal-control tumor therapy framework consisting of radio- and anti-angiogenesis control strategies that are included in a tumor growth model is investigated. The governing system, resulting from the combination of two well established models, represents the differential constraint of a non-smooth optimal control problem that aims at reducing the volume of the tumor while keeping the radio- and anti-angiogenesis chemical dosage to a minimum. Existence of optimal solutions is proved and necessary conditions are formulated in terms of the Pontryagin maximum principle. Based on this principle, a so-called sequential quadratic Hamiltonian (SQH) method is discussed and benchmarked with an “interior point optimizer—a mathematical programming language” (IPOPT-AMPL) algorithm. Results of numerical experiments are presented that successfully validate the SQH solution scheme. Further, it is shown how to choose the optimisation weights in order to obtain treatment functions that successfully reduce the tumor volume to zero.\",\"PeriodicalId\":55568,\"journal\":{\"name\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4236/AM.2018.98067\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4236/AM.2018.98067","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling and Numerical Solution of a Cancer Therapy Optimal Control Problem
A mathematical optimal-control tumor therapy framework consisting of radio- and anti-angiogenesis control strategies that are included in a tumor growth model is investigated. The governing system, resulting from the combination of two well established models, represents the differential constraint of a non-smooth optimal control problem that aims at reducing the volume of the tumor while keeping the radio- and anti-angiogenesis chemical dosage to a minimum. Existence of optimal solutions is proved and necessary conditions are formulated in terms of the Pontryagin maximum principle. Based on this principle, a so-called sequential quadratic Hamiltonian (SQH) method is discussed and benchmarked with an “interior point optimizer—a mathematical programming language” (IPOPT-AMPL) algorithm. Results of numerical experiments are presented that successfully validate the SQH solution scheme. Further, it is shown how to choose the optimisation weights in order to obtain treatment functions that successfully reduce the tumor volume to zero.
期刊介绍:
Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects.
The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry.
Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.