{"title":"下降PRP共轭梯度法的全局收敛性","authors":"Min Li, Heying Feng, Jianguo Liu","doi":"10.1590/S1807-03022012000100004","DOIUrl":null,"url":null,"abstract":"Recently, Yu and Guan proposed a modified PRP method (called DPRP method) which can generate sufficient descent directions for the objective function. They established the global convergence of the DPRP method based on the assumption that stepsize is bounded away from zero. In this paper, without the requirement of the positive lower bound of the stepsize, we prove that the DPRP method is globally convergent with a modified strong Wolfe line search. Moreover, we establish the global convergence of the DPRP method with a Armijo-type line search. The numerical results show that the proposed algorithms are efficient. Mathematical subject classification: Primary: 90C30; Secondary: 65K05.","PeriodicalId":50649,"journal":{"name":"Computational & Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The global convergence of a descent PRP conjugate gradient method\",\"authors\":\"Min Li, Heying Feng, Jianguo Liu\",\"doi\":\"10.1590/S1807-03022012000100004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Yu and Guan proposed a modified PRP method (called DPRP method) which can generate sufficient descent directions for the objective function. They established the global convergence of the DPRP method based on the assumption that stepsize is bounded away from zero. In this paper, without the requirement of the positive lower bound of the stepsize, we prove that the DPRP method is globally convergent with a modified strong Wolfe line search. Moreover, we establish the global convergence of the DPRP method with a Armijo-type line search. The numerical results show that the proposed algorithms are efficient. Mathematical subject classification: Primary: 90C30; Secondary: 65K05.\",\"PeriodicalId\":50649,\"journal\":{\"name\":\"Computational & Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational & Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1590/S1807-03022012000100004\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational & Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1590/S1807-03022012000100004","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The global convergence of a descent PRP conjugate gradient method
Recently, Yu and Guan proposed a modified PRP method (called DPRP method) which can generate sufficient descent directions for the objective function. They established the global convergence of the DPRP method based on the assumption that stepsize is bounded away from zero. In this paper, without the requirement of the positive lower bound of the stepsize, we prove that the DPRP method is globally convergent with a modified strong Wolfe line search. Moreover, we establish the global convergence of the DPRP method with a Armijo-type line search. The numerical results show that the proposed algorithms are efficient. Mathematical subject classification: Primary: 90C30; Secondary: 65K05.
期刊介绍:
Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics).
The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.